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Abstract 

 

A Visual Basic agro-climate application developed by climatologists at the International Center 
for Agricultural Research in the Dry Areas and the U.S. Department of Agriculture is described 
here. The application’s climate database consists of weather generator parameters derived from 
the station data of 649 meteorological stations. From those parameters the program calculates 
climate statistics over arbitrarily defined periods within summer or winter growing seasons at 
user-selected latitude-longitude coordinates. The statistics reported include: crop 
evapotranspiration estimates derived from the FAO-56 single crop coefficient algorithm, 
probabilities of exceedance of both cumulative rainfall and growing degree days, the probability 
that minimum and maximum daily temperatures will exceed user-defined temperature thresholds, 
and the probability of heat stress, cold stress and dry periods of varying duration. 
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1. Introduction 
The mandate area of the International Center 

for Agricultural Research in the Dry Areas 
(ICARDA) extends from northwest Africa to 
central Asia and is home to more than 755 
million people (Fig. 1). The growing regions of 
those countries are climatically diverse (De 
Pauw, 2000; Ryan et al. 2006; De Pauw, 2007), 
but very little information about climate and 
abiotic plant stress is available to ICARDA plant 
breeders, agronomists, and hydrologists. The 
ICARDA Agro-Climate Tool (hereafter, the 
“application”), a Visual Basic application that 
can be run on Windows  2000, XP, and Vista 
operating systems, was developed to address that 
need. A schematic screenshot of the application 
can be found in Fig. 2.  

Under ideal circumstances the ICARDA 
mandate countries would each possess dense 
meteorological networks, and each station in 
those networks would provide unbroken daily 
weather records over a recent 30 year period. 
With those conditions an agro-climate 
application similar to that described here could 
be based on observed weather data similar to the 
daily temperature and precipitation 
measurements provided by the United States 
cooperative (National Weather Service, 2000) 
and historical climatological networks 
(Easterling et al., 1999). However, actual data 
availability over the ICARDA countries is far 
from ideal. Although station density is sufficient 
over many agricultural areas, many of those 
stations have considerable amounts of missing 
data. Moreover, requiring data records of 30 year 
duration would leave many areas with no or 
insufficient station coverage. Thus one of the 
leading challenges in the application’s 
development was to estimate seasonal climate 
variability from shorter, and sometimes 
fragmentary, data records. This challenge was 
addressed here by generating primary daily 
weather variables from modified GEM6 (Hanson 
et al., 1994) weather generator code, based on 
the monthly statistics of the available daily data. 
Secondary variables (daily dew point 
temperature, short-wave surface radiation, net 
outgoing long-wave radiation and reference grass 
evapotranspiration) were derived from primary 
variables using algorithms drawn from the 
FAO’s ‘Guidelines for Computing Crop Water 
Requirements’ (Allen et al., 1998), hereafter 
referred to as ‘FAO-56’. Daily crop 
evapotranspiration (ET) values were then derived 
from the reference grass ET values using the 
FAO-56 single crop coefficient method. 

 

 
 
Fig. 1. The ICARDA mandate region, with 
locations of the 649 meteorological stations used to 
provide data for the ICARDA Agro-Climate Tool. 

 
2. Data 

The application’s climate statistics are derived 
from two data sets that provide daily records of 
minimum and maximum temperature and 
precipitation. The main data source is the Global 
Daily Summary Data (GLDS) set (National 
Climatic Data Center, 1994), which provides data 
for ICARDA growing regions at 590 
meteorological station locations. The period of 
record for the GLDS data set is October 1977 to 
December 1991. The secondary data source is the 
Global Daily Climatology Network data (GDCN; 
National Climatic Data Center, 2002), which 
provides records of primary daily variables at 59 
additional locations. Data from GDCN stations is 
of varying duration, but in some cases begins in the 
early 20th century. However, because the 
application’s operation involves the averaging of 
weather generator parameters from different 
stations to derive parameters for locations between 
stations, those parameters must be derived from 
data over a uniformly defined period. As a result, 
the decision was made to limit the calculation of 
statistics from GDCN data to the GLDS data 
period, i.e., 1977-1991.   

 
3. Statistics Calculation 
3.1 Data Sampling Requirements  

The lack of long-term daily station data, and 
the intermittent nature of much of the 
meteorological data that was available, was a 
limiting factor in the calculation of the 
application’s climate statistics. These problems 
were addressed through modifications to the 
original GEM6 code of Hanson et al. (1994) and by 
imposing minimum data sampling requirements. 
An additional strategy for addressing this 
underlying data problem requires the end-user to 
use the application in a way that acknowledges the 
possibility of the resulting sampling uncertainties. 
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a) Location selection map.
b) Pan view map.
c) Longitude, latitude, elevation of selected location.
d) Growing season display selector.
e) Annual cycle of min. and max. temperature (T) for selected location.
f) Probability of min. and max. T exceeding user defined
    heat stress and cold stress thresholds, and probability of rainfall.
g) Annual cycle of mean rainfall on rainy days.
h) Heat stress threshold (HST) slider control and display.
i)  Cold stress threshold (CST) slider control and display.
j)  Crop selection scroll list.
k) Soil type selector.
l) 2 meter wind speed spinner selector and display.
m) Crop ET, precipitation, and irrigation demand disttributions
      for four crop growth periods.
n) Crop ET, precipitation, and irrigation demand disttributions
      for entire growing season.
o) Crop growth period date displays and spinner selectors.
p) Probability of exceedance curve for Crop ET, precipitation,
     or irrigation distribution selected in (n) or (o).
q) Day of Year cursor indicator for the (s) period selector control.
r)  Period selected by the (s) period selector control.
s)  Period selector control for precipitation or temperature tab.
t)  Probability of exceedance curve for cumulative precipitation
     for period indicated in (r) on precipitation tab.
u)  Probability that daily rainfall amounts will fall in one of  five
     categories ( < 5mm, 5-10 mm, 11-15 mm, 16-20 mm, 21-25 mm, > 25 mm).
u)  Probability of dry periods  of  varying lengths
      ( < 3 days, 3-5 days, 6-8 days, 9-11 days, 12-14 days, > 14 days).
w)  Probability of exceedance curve for growing degree days (GDD)
     for period indicated in (r) on temperature tab.
x)  GDD temperature threshold spinner selector and display.
y)  Probability of heat stress periods of varying duration
    ( < 3 days, 3-5 days, 6-8 days, 9-11 days, 12-14 days, > 14 days), for heat
     stress threshold defined by (h).
z)  Probability of cold stress periods of varying duration
    ( < 3 days, 3-5 days, 6-8 days, 9-11 days, 12-14 days, > 14 days), for cold
     stress threshold defined by (i).

Fig. 2. The ICARDA Agro-Climate Tool  graphical user interface.
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Normally, GEM6 code calculates weather 
statistics over 24 bi-weekly periods of the year. 
However, the limited daily data availability over 
many agriculture regions, and the data sampling 
requirements imposed here, made bi-weekly 
averaging impractical. As a result, GEM6 
weather generator parameters were derived from 
monthly statistics of precipitation, and minimum 
and maximum temperature. A complete daily 
data record during October 1977–December 
1991 would result in approximately 14*30 = 420 
daily weather measurements contributing to each 
month’s precipitation and temperature statistics. 
But in ICARDA agricultural areas outside of the 
former Soviet Union gaps in daily weather 
records were frequent. To provide adequate 
station coverage over those areas while also 
calculating reasonably representative monthly 
statistics, a minimum sampling threshold of 60 
days for monthly statistics was imposed. Thus 
for example, the mean maximum temperature for 
January at a station location might be based on 
as few as 60 daily maximum temperature 
measurements. Deriving an average from such a 
limited number of measurements can lead to 
sampling error in the resulting statistic. The 
magnitude of sampling error is proportional to N-

1/2, where N is the number of measurements 
(Mendenhall et al., 1990). A sample mean 
calculated from N=60 measurements can lead to 
an error (i.e., the difference between the true, 
population mean and the mean calculated from a 
60 day sample) as large as 0.26 * σ,  where σ is 
the standard deviation of the population 
distribution. Errors for monthly rainfall transition 
probabilities (i.e., p00, p10 in Section 3.2), and 
daily temperature cross correlation values used 
in the GEM6 multivariate temperature generation 
scheme (i.e., Eq.s 12-15 in Hanson et al., 1994) 
may be of similar magnitude. 
3.2 Calculation of Monthly Statistics 

The lack of continuous daily data over 
ICARDA agricultural regions also influenced the 
choice of statistics that were calculated from the 
data. The original GEM6 code calculates two 
sets of temperature statistics: the mean and 
standard deviation of maximum and minimum 
temperature during days with rain, and identical 
statistics for days without rainfall. But dividing 
the temperature data by rainfall condition would 
have caused many stations to fail the minimum 
monthly sampling requirement described above, 
producing a sparse meteorological network. As a 
result, temperature statistics here were calculated 
over all days, both wet and dry. Thus for each 
station, temperature variation throughout the 

year was described through one set of statistics 
that describe the mean and standard deviation of 
daily minimum and maximum temperature for 
each month of the year. 

The GEM6 weather generator uses 
multivariate regressive and autoregressive 
relationships to derive daily anomalies of 
maximum and minimum temperature (tmax, tmin) 
and short-wave surface radiation (srad) based on 
the current and previous day’s anomaly values 
(Eqs. 12-15 Hanson et al. (1994)). The 3 X 3 ‘A’ 
and ‘B’ matrices defining these regressive 
relationships are derived from cross correlation 
values calculated between tmin, tmax, and srad at 0 
and 1 days lag. But because daily srad values are 
not available over the ICARDA mandate region, 
temperature generation here is based on 2 X 2 
matrices that are derived from cross correlation 
values calculated only between daily tmin and tmax 
values. Daily shortwave surface radiation values 
were estimated via Hargreaves relationship 
(Section 6). Although GEM6 calculates ‘A’ and 
‘B’ matrices for each month, the limited 
availability of daily data at many station 
locations made the calculation of daily 
correlation and cross-correlations on a monthly 
basis impractical. As a result, the application 
calculates only one ‘A’ and ‘B’ matrix per 
station, which are in turn derived from annual 
averages of tmin and tmax correlation and cross 
correlation values.  

The probability that a day will be wet in the 
GEM6 generation scheme depends on two sets 
of monthly statistics that describe the probability 
that a dry day will be followed by a dry day 
(p00) during each month, and the probability that 
a wet day will be followed by a dry day (p10) 
during each month. GEM6 code normally 
assigns the amount of rain that falls on a wet day 
using a mixed exponential distribution. 
However, here it was found that a three-
parameter mixed exponential distribution did not 
perform noticeably better than a simple one-
parameter exponential distribution. As the 
parameter for an exponential distribution is the 
expectation of the distribution’s variable, 
(Mendenhall (1990)), the exponential parameter 
used here is the average of the daily rainfall 
totals, calculated for each month of the year. 
 
4. GEM6 generation of primary synthetic 

variables. 
A flow chart tracing the generation of 

synthetic daily records of primary daily 
meteorological variables, i.e., tmin ,tmax and 
precipitation, can be found in Fig. 3.
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Fig. 3. Flow chart of the generation of synthetic records of daily minimum and maximum temperature and 
rainfall at a user-selected latitude and longitude. Gray outlined elements indicate a user control, and gray 
shaded elements indicate a display marked in Fig. 2. 
 
 
4.1. GEM6 Fourier Parameter Calculation and 
Storage. 

The annual cycles of monthly temperature 
and precipitation statistics described in Section 3 
are interpolated to daily variability in the 
application by solving for the first three annual 
Fourier harmonics of the monthly statistics, and 
then using those harmonics to reconstruct a 
smoothed version of the annual cycle through an 
inverse transform. The results of the Fourier 
transform are stored here in an Access™ 
database, which provides the inputs for the 
application’s daily weather generation scheme. 
In addition the database stores information about 
each station’s longitude, latitude, and elevation, 
and the elements of the ‘A’ and ‘B’ correlation 
and cross-correlation matrices. 
4.2 Spatial Interpolation of GEM6 Parameters 
Between Stations 

The VB code calculates a user-selected 
location’s GEM6 parameters as an inverse-
distance weighted average of the Fourier 
parameter sets and the ‘A’ and ‘B’ matrix 
elements of neighboring meteorological stations. 

Sets of nearest neighbor stations for ICARDA 
agricultural areas - the yellow shaded areas in the 
large locator map (Fig. 2a) - are defined by a 
second Access database. That database table 
divides the yellow area into 792 1° longitude by 
1° latitude grid areas. The neighboring stations 
for a 1° by 1° grid area are the stations that lie 
within a 3° longitude by 3° latitude grid that 
surrounds that central 1° by 1° grid.  

Once the VB code determines which 1° by 
1° grid contains the selected location, the Fourier 
parameter sets for the grid’s neighboring stations 
are then retrieved from the application’s primary 
GEM6 parameter database. The distances 
between the selected location and those stations 
are then calculated, and the stations are then 
sorted according to their distance from the 
selected location. If the nearest station is within 
20 kilometers, then that station’s parameters are 
assigned to the location. Otherwise, the 
location’s parameters are calculated as a distance 
weighted average of the nearest neighboring 
stations using an expanding radius search 
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algorithm. In some areas where station coverage 
is sparse (e.g., Sudan and Ethiopia) this 
algorithm could cause a location’s parameters to, 
in the worst case, be averaged from the 
parameters of stations ~ 200 km away. 
4.3  Maximum and Minimum Daily Temperature 
Generation 

To account for the effects of elevation on a 
selected location’s interpolated temperature 
variation, the Fourier parameters for the mean 
temperature of the selected neighboring stations 
are adjusted to sea-level before inverse-distance 
averaging. This adjustment assumes a mean wet 
adiabatic atmospheric lapse rate of – 6.5° ˚C/km. 
The adjusted mean temperature parameters, and 
all the remaining amplitude and phase angle 
Fourier parameters for all the selected 
surrounding stations are then averaged using an 
inverse distance2 averaging scheme. After all of 
the selected location’s Fourier parameters have 
been estimated in this way, the location’s mean 
maximum and minimum temperature parameters 
at sea level are then adjusted – in most cases 
decreased, as most stations are above sea-level – 
to the location’s elevation as defined by the 
GTOPO30 digital elevation model (USGS, 
2006). This second elevation adjustment also 
assumes a wet adiabatic atmospheric lapse rate.  

After the entire Fourier parameter set for the 
selected location has been spatially interpolated, 
the location’s annual cycles of the mean and 
standard deviations of daily maximum 
temperature and of the mean and standard 
deviations of daily minimum temperature are 
then constructed through an inverse Fourier 
transform. The annual cycles of mean daily 
maximum and minimum temperature are used to 
describe the location’s annual temperature cycle 
in the top graph of the Three-Pane display on the 
application’s left side (Fig. 2e). The four annual 
mean and standard deviation annual cycles, and 
the location’s spatially interpolated ‘A’ and ‘B’ 
matrices, are then used to generate stochastic 
streams of daily maximum and minimum 
temperature. These streams are stored as 100 
years of synthetic temperature variation in two 
100 X 365 arrays.  
4.4 Daily Precipitation Generation 
A selected location’s precipitation Fourier 
parameters are estimated using the same inverse 
distance weighting method used to interpolate 
temperature parameters.. The resulting 
parameters for the location are then inverse 
transformed into three annual cycles: the annual 
cycle of p00, the annual cycle of p10, and the 
annual cycle of the exponential rainfall 

distribution parameter (XMU). The annual cycle 
of the probability that rain falls on a given day of 
the year is derived from the p00 and p10 
probabilities via Eq. 4 of Hanson et al. (1999) 
 

 ( )W
1 p00(n)P day n iswet , n 1, 365

1 p10(n) p00(n)
−

= =
+ −

 (1) 

 
These probabilities for each day of the year are 
used to graph the location’s annual cycle for 
daily rainfall probability in the middle graph of 
the Three-Pane display on the application’s left 
side (Fig. 2f). Because the exponential rainfall 
distribution parameter is equal to the average 
rainfall amount on wet days, the XMU annual 
cycle is used to graph the average rainfall 
amount on wet days in the bottom graph of the 
Three-Pane display (Fig. 2g). The annual cycles 
of XMU and the p00 and p10 daily rainfall 
probabilities are used to generate 100 years of 
synthetic precipitation data which is stored in a 
100 X 365 array. 
 
5. Comparison of real vs. generated primary   
variable statistics. 

The application estimates the statistics of 
real daily temperature and precipitation data, and 
also statistics of secondary daily variables 
derived from those primary variables. Because 
weather generators can produce continuous 
streams of artificial weather data from 
incomplete data records, daily weather variation 
is generated here from weather generator 
parameters derived from real data. As a result, 
the accuracy of the application’s reported 
statistics depends on the equivalence of real data 
statistics with those of the corresponding 
generated weather data streams.  

That accuracy is checked here using data 
from a network of four central U.S. 
meteorological stations consisting of Carrizozo, 
New Mexico, Ballinger and Clarksville in Texas, 
and Pierre, South Dakota (Fig. 4). These stations 
are part of the U.S. Historical Climatology 
Network (USHCN) and provide almost complete 
records of daily minimum and maximum 
temperature and precipitation during 1976-2005. 
During that period each station has no more than 
3% missing data in any of the three primary 
meteorological variables. Days with missing data 
were filled in with artificial values generated by 
Hansen et al’s (1994) unmodified GEM6 
configuration. 
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Fig. 4. Locations of the USHCN meteorological 
stations used for verifying GEM6 weather 
generator output. 

 

Statistics derived from real data were 
compared with the corresponding statistics of 
synthetic data generated from the application’s 
modified GEM6 code under three conditions. In 
the first condition, the application’s monthly 
weather generator statistics were calculated with 
real daily data from each year of 1976-2005. 
These synthetic results will be referred to as 
“Ideal” (I), as climate statistics are ideally 
calculated from 30 years of complete data. In the 
second condition, monthly statistics were 
calculated with data from 1978-1991. These 
results will be referred to as “Best” (B), as 14 
years of continuous data reflects the best possible 
data conditions in the ICARDA station data. In 
the final condition, each month’s statistics were 
calculated from 9 randomly selected 7 day 
sequences of data within that month during 
1978-1991. These results are referred to as 
“Worst” (W), as they correspond closely to the 
worst case 60 day sampling threshold conditions 
imposed here on the ICARDA station data. 
5.1 Annual Temperature and Precipitation  
Climatology 

The application’s Three-Pane display (Figs. 
2 e,f,g) shows the annual cycle of a selected 
location’s mean minimum and maximum 
temperature (Tmin, Tmax), precipitation probability 
(Pp) and mean precipitation amount (Pa), as 
represented by each variable’s inverse Fourier 
transform. The Fig. 5 scatterplots compare the 
yearly cycles found in the USHCN station’s real 
data with cycles of corresponding generated data 
under the three monthly statistics conditions. 
These test’s annual cycles are represented by 
statistics calculated over the year’s 26 bi-weekly 
periods. Those statistics are calculated from the 
four station’s 30 years of real data and also from 
100 years of data generated under the I, B, and 

W conditions. That figure’s twelve scatterplots 
compare the bi-weekly statistics of observed Pp, 
Pa, Tmin, and Tmax, on the X axes, with the same 
two week period’s generated statistic on the Y 
axes. The first column’s three plots (Figs. 5a-c) 
compare real Pp with generated Pp based on the I, 
B and W monthly statistics condition. The 
second column (Figs. 5d-f) consists of similar 
plots comparing the bi-weekly percentage of wet 
days. The third and fourth column plots (Figs. 
5g-l) compare averages of minimum and 
maximum temperature. Each scatterplot 
combines the 26 scatterpoints for all four stations 
on one plot, thus each plot contains 104 points. 
The aggregate rms error of the 104 scatterpoints 
are also shown on each plot.  

In Fig. 5 the two precipitation variable’s 
scatter is noticeably greater than that of the 
temperature variables under each of the three 
data conditions. In the six Tmin, and Tmax 
scatterplots the rms error varies between 1.32–
1.42 ˚C , while the range of variability in the 
minimum and maximum temperature cycles is 
~30.0 ˚C. By contrast, the 5.9% rms error of the 
Real vs. Worst case comparison for Pp (Fig. 5c) 
is about one fourth of the ~25% annual range in 
precipitation probability. In the precipitation 
variables the increase in mean error is 
particularly clear as the amount of data used to 
calculate the weather generator’s monthly 
statistics decreases. As data conditions go from 
Best to Worst case conditions the rms error in 
the Pp annual cycles almost doubles in Figs. 5b 
and c. Similarly, although the Ideal (5.58 mm) 
and Best case (6.24 mm) mean error in 
precipitation amount in Figs. 5d and e are 
comparable, that error increases to 10.43 mm 
under Worst case data conditions (Fig. 5f). The 
weather generator’s greater error in reproducing 
precipitation’s annual cycle, even under Ideal 
data conditions, might be traced to the fact that, 
when compared to temperature, precipitation’s 
annual cycle calculated over bi-weekly periods is 
relatively noisy. In the GEM6 rainfall generation 
scheme a day’s wet or dry condition is defined 
by comparing random number generation with 
Eq. 4’s p00 and p10 variables. Because those 
variables are interpolated here to daily resolution 
via an inverse Fourier transform of the first three 
annual harmonics, they are highly smoothed. 
This smoothing, combined with the noisy nature 
of real precipitation probabilities, may lead to 
random errors in the rate of rainfall generation 
over the annual cycle. Although the cycles of 
Fourier-smoothed Pp and Pa are displayed as 
green traces in the Three-Pane Display (Figs. 2f, 
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Fig. 5. a-c) Scatterplots of real vs. generated bi-weekly percent wet days throughout the annual cycle for 
the 4 USHCN stations in Fig. 4, based on the I(a), B(b) and W(c) monthly statistics condition. e-f) As in (a-
c) for mean bi-weekly precipitation amount. g-i) As in (a-c) for mean bi-weekly minimum temperature. j-l) 
As in (a-c) for mean bi-weekly maximum temperature. Root mean square error figures are the aggregate 
rms error of each plot’s 104 scatterpoints. 
 

 
and g), they are meant as qualitative 
representations of the real, and much noisier 
annual precipitation climatology.  But the 
relative agreement between real and generated 
temperature statistics in Figs. 5g-l shows that, 
even under the Worst case data conditions, the 
Three-Pane display’s red and blue Fourier-
smoothed Tmin, and Tmax cycles (Fig. 2a) more 
directly reflect real annual temperature variation. 
5.2 Seasonal Precipitation Climatology 

Figure 5 compares bi-weekly means, but the 
application can present climate information 
calculated over seasonal periods with user-
selected beginning and end dates. On the 
Precipitation Tab the probability of exceedance 
of total seasonal precipitation is displayed (Fig. 
2t), as are bar charts showing the probability of 
daily rainfall amounts (Fig. 2u) and the 
probability of dry spells of various duration (Fig. 
2v).  

Figure 6a’s bar and whisker diagrams show 
distributions of total summer (May 15–Oct. 15) 

precipitation in the real data and in the generated 
data under the Ideal, Best and Worst case data 
conditions. Those diagrams are shown for each 
of the four USHCN stations, and divide the 
distributions into equal 33rd percentiles (terciles). 
Terciles were defined from 30 years of summer 
precipitation in the real data, and from 100 
summers of synthetic data generated under each 
data condition. Generally, the distributions 
produced by the weather generator under each 
condition tracks the real data’s station-to-station 
variability. For example, the observed west-to-
east increase in summer rainfall between 
Carrizozo and Clarksville is also found in each 
of the generated distributions. But at Clarksville 
the central bars of those distributions show a 
positive bias relative to the real distribution as 
data conditions go from Ideal to Worst, while at 
Pierre there is an opposite tendency. But overall, 
the GEM6-generated distributions at the four 
sites reproduce the observed range of 1976-2005 
summer precipitation fairly well. This suggests 
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Fig. 6. a) Bar and whisker diagrams dividing real and generated May 15-Sept. 15 precipitation distributions 
into equal 33rd percentiles, for the 4 USHCN stations in Fig. 4. White bars indicate real distributions, gray 
shaded bars indicate distributions generated under the I,B, and W monthly statistics conditions. b) 
Probability distribution of real and generated daily rainfall amounts at each station during May 15-Sept. 15, 
using the same shading scheme in (a). c) Probability distribution of real and generated days between rain 
for each station during May 15-Sept. 15. 
 

 
that the effects of the random errors in bi-weekly 
precipitation climatology seen in Figs. 5a-f may 
cancel in the calculation of longer-term 
precipitation statistics.  

Figures 6b and c correspond to the green and 
gold bar graphs on the application’s Precipitation 
Tab (Fig. 2u,v), calculated over the May 15-Oct. 
15 summer growing season. Figure 6b was 
formed by sorting each of the four USHCN sites 

daily rainfall totals into one of six bins, and 
shows the results of this sorting in both the real 
data and the artificial data generated under the 
‘I’, ‘B’, and ‘W’ statistics conditions. Those 
figures show qualitative agreement between the 
distribution of generated and real daily rainfall 
amounts at all four sites, and each of the three 
statistics conditions. Figure 6c was formed by 
calculating the percentage of dry days that 
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Fig. 7 a) As in Fig. 6a for May 15-Sept. 15 growing degree days calculated with an 18.33 ˚C temperature 
threshold. b) The probability that daily maximum temperature will exceed 30 ˚C in consecutive runs of 1-2, 
3-5, 6-8, 9-11, 12-14, or more than 14 days in the real and generated data during May 15-Sept.15. c) The 
probability that daily minimum temperature will be below  0 ˚C in consecutive runs of 1-2, 3-5, 6-8, 9-11, 
12-14, or more than 14 days in the real and  generated data during Jan. 1-Mar. 15. 
 

 
occurred in runs of 1-2, 3-5, 6-8, 9-11, 12-14, or 
more than 14 days in the real and generated data. 
Carrizozo shows a lower than observed 
frequency of 14+ day dry spells in the generated 
data under the I, B and W monthly statistics 
conditions. Ballinger’s generated data shows a 
higher incidence of dry spells shorter than 9 days 
and a lower incidence of 14+ day dry spells. 
Clarksville and Pierre show closer agreement in 
dry run duration between the real data and the 
generated data under all three statistics 
conditions.  
5.3 Seasonal Temperature Climatology 

The Temperature Tab displays an 
exceedance curve for seasonal growing degree 
days (Fig. 2w), and bar charts showing the 
probability of heat (Fig. 2y) and cold stress 

periods (Fig. 2z) of various duration. Figure 7a is 
Fig. 6a’s counterpart for summer growing degree 
days (GDD) calculated with an 18.33 ˚C (65.0 
˚F) temperature threshold. As in Fig. 6a, the real 
data’s site-to-site GDD variation is followed by 
the generated data under the I, B, and W monthly 
statistic conditions; e.g., the increases in 
generated GDD at Ballinger and Clarksville 
relative to Carrizozo and Pierre. But the central 
terciles for generated GDD at Ballinger and 
Clarksville are negatively biased relative to real 
growing degree days. Also, the height of the 
three generated distributions at those warmer 
sites are noticeably shorter than that of the real 
distributions, which shows that the weather 
generator produced less interannual variance in 
summer GDD than is found in the real data.  
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Figure 7b corresponds to the application’s 
red bar graphs on the Temperature Tab, 
calculated over the May 15-Oct. 15 summer 
growing season. Those bar graphs are analogous 
to the Fig. 6b bar graphs, but show the 
percentage of hot days that occurred in the same 
six classes of run duration, in both the real and 
generated data. In the Fig. 7b test a day was 
considered hot when Tmax was greater than 30 ˚C 
(86 ˚F). In the application that heat stress 
threshold can be adjusted over a 15-45 ˚C range 
(Fig. 2h). The GEM6 output generated from 
Carrizozo monthly statistics under W conditions 
shows a lower probability of 14+ day hot spells 
than is found in the real data or the I and B 
generated data, and higher probabilities of 
shorter-term heat stress. At the other three 
stations the length of summer hot spells are in 
fairly close agreement in the generated and real 
data in each of the six duration categories, under 
each of the three generated data conditions. 

Figure 7c is similar to Fig 7b, but shows the 
occurrence of cold runs that occurred in the real 
and generated data during January 1–March 15. 
Comparable cold run probabilities are displayed 
on the blue bar graphs on the application’s 
Temperature Tab (Fig. 2i). The Fig. 7c test 
considered a day to be cold when Tmin was less 
than 0 ˚C (32 ˚F), but similar cold stress 
thresholds can be adjusted by the user (Fig. 2h) 
in the application. Carrizozo shows a higher 
probability of I, B, and W-generated short-term 
(< 9 day) cold spells, but lower probabilities of 
14+ day dry spells than is found in the real data. 
At Ballinger and Clarksville all generated data 
shows a clearly higher incidence of 1-2 day cold 
spells, but lower incidences of longer term cold 
periods compared to the real data. At Pierre there 
is a consistently lower than observed probability 
of 14+ day cold spells in the I, B, and W-
generated Tmin  values. 

The tendency for weather generators to 
produce lower than observed incidences of 
extreme daily temperature conditions, and 
Ballinger’s and Clarksville’s reduced I, B, and W 
summer GDD variance in Fig. 7a, might be 
traced to how stochastic streams of daily 
temperature are generated. Generators such as 
GEM6 randomly vary daily temperature about a 
station’s mean annual temperature cycle, with 
day-to-day persistence determined by the A and 
B matrix values. Those values are in turn defined 
by correlations between daily Tmin, and Tmax at 0 
and 1 day lags. But because those correlations 
are calculated over all of the available data, they 
reflect the general short-term persistence traits of 

day-to-day weather variability, and not the 
persistence of abnormal periods. Thus, for 
example, weather generators are unlikely to 
produce the abnormally long runs of daily 
temperatures that produce high GDD values 
during summer growing seasons marked by 
drought. Distributions of generated GDD that 
lacked these extreme values would have less 
variance than their real counterparts. 
5.4 Summary and Suggestions for the 
Application’s Use 

The Figs. 5-7 tests show that monthly 
statistics derived from smaller samples of daily 
data can lead to biases in the application’s 
generated seasonal climate distributions. In Fig. 
6a smaller data samples lead to increasing bias in 
generated summer precipitation at Clarksville 
and Pierre. In Fig. 7a Carrizozo’s Worst case 
summer GDD is negatively biased relative to the 
observed distribution and the generated Ideal and 
Best-case distributions. Although Figure 6a 
shows distributions of seasonal precipitation that 
are reproduced reasonably well by the weather 
generator under each data condition, Figs. 5a-f 
shows bi-weekly precipitation climatology errors 
that increase under the Worst case conditions. 
While the effects of those random short-term 
errors might cancel in calculating precipitation 
statistics over 5 month periods, they may have a 
greater effect over sub-seasonal periods. As the 
application can calculate over periods as short as 
10 days, shorter-term precipitation statistics 
might have random errors that increase as the 
daily data sample size decreases. 

The method suggested here for identifying 
errors related to data sampling is based on the 
assumption that they may not be consistently 
evident at neighboring station locations. In 
operating the application the user selects a 
location by left-clicking that location on the large 
map in the application’s upper-left corner (Fig. 
2a). The nearby stations whose Fourier 
parameters will be used to estimate the location’s 
GEM6 parameter set will then flash in sequence. 
In practice, the user should always compare the 
application’s results for a location with the 
corresponding results for each of those nearby 
stations. The user should also compare each of 
the nearby station’s results with one another. For 
example, in the application’s GUI display the 
annual cycles for the probability of heat and cold 
stress might be compared (Fig. 2f), as might the 
probability of exceedance curves for 
precipitation (Fig. 2t) and growing degree days 
(Fig. 2w). If these comparisons show one 
station’s results to differ clearly from the 
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remaining stations, that station’s GEM6 
parameters may have been derived from biased 
statistics. In that case the user should consider 
using results derived only from one of the 
remaining nearby stations, or selecting a nearby 
location that does not include the outlier station 
in the averaging process. But if the nearby 
station’s results are similar with minor variation, 
the application may produce reasonable 
estimates of an area’s climatology through the 
inverse-distance averaging algorithm. However, 
this averaging process cannot compensate for the 
inherent shortcomings of the weather generator, 
e.g., the insufficient interannual variance in GDD 
in some areas (Fig. 7a), which exist under even 
Ideal monthly statistics conditions.  

 
 
 

6. Generation of secondary weather 
variables.  
Secondary daily meteorological variables 

were derived here using parameterization 
relationships drawn from FAO-56 (Allen et al., 
1998). For reference to the generation of those 
variables, see the Fig. 8a flow chart.  
6.1 Dew Point Temperature 

Daily dew point temperatures were 
estimated from daily minimum temperatures 
using the following parameterization scheme 
(FAO-56  Eq. 6-6): 
• Tdew  = Tmin - 2°C for locations in arid areas, 
• Tdew  = Tmin  elsewhere.             (2) 
Arid locations were defined here as stations with 
a mean annual temperature of 18 °C or greater, 
and a mean annual number of wet days of 55 or 
less.  

 
 
 
 

 
 
Fig. 8. a) Flow chart of the generation of daily secondary weather and crop evapotranspiration variables. 
Gray outlined elements indicate a user control, and gray shaded elements indicate a display marked in Fig. 
2. b) Growing season coefficient profile for the FAO-56 single coefficient crop evapotranspiration method. 
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6.2 Shortwave radiation at the surface 

Daily integrated shortwave surface radiation (RS) 
was estimated using the Hargreaves radiation formula 
(FAO-56 Eq. 50): 
 

S Rs max minR k T T R= − a            (3) 

Where, 
• kRs is an adjustment coefficient, assigned here as 

0.175 °C -0.5 , 
• Tmin is daily minimum temperature (˚C), 
• Tmax is daily maximum temperature (˚C), and,  
• Ra is the daily integrated shortwave radiation at the 

top of the atmosphere in units of Joules * 106 / 
(met.2 * day) (FAO-56 Eq. 21). 
 

6.3 Vapor Pressure and Saturation Vapor Pressure. 
Given daily minimum, maximum, and dew point 

temperatures, the vapor pressure and saturation vapor 
pressure are solved for using the Clausius-Clapeyron 
equation ( eo(T): FAO-56 Eq. 11).  

 
Actual vapor pressure = ea = eo(Tdew),            (4) 
Saturation vapor pressure = es 

es  =0.5* (eo(Tmax) + eo(Tmin))            (5) 
 
6.4 Net upwelling outgoing long-wave radiation (OLR) 
at the surface. 

Net upwelling surface OLR was estimated using 
FAO-56 Eq. 39: 

 

( )
4 4

max min S

nl a

SO

T T RR 0.34 0.14 e 1.35 0.35
2

⎛+⎡ ⎤= σ − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠R
⎞     (6) 

Where, 
• σ is the Stefan-Boltzmann constant, 
• Tmin is daily minimum temperature in Kelvin, 
• Tmax is daily maximum temperature in Kelvin,  
• RS is the estimated daily shortwave radiation at the 

surface (Eq. 6) 
• RSO is the estimated clear sky daily shortwave 

radiation at the surface (FAO-56 Eq. 37), and, 
• ea is the actual vapor pressure (Eq. 7). 

 

6.4 Reference grass evapotranspiration 
The FAO-56 method for deriving 

evapotranspiration rates for various crops is based on 
the estimation of reference evapotranspiration rates 
over a hypothetical grass surface (FAO-56 Chapter 4). 
Daily reference grass ET rates are calculated using the 
FAO-56 Penman-Monteith equation (FAO-56 Eq. 6). 

 

( )( ) ( )
( )

2

2

9000 408 1

1 0 34

S nl S a

O

. R R G u e
TET

. u

Δ − α − − + γ −
=

Δ + γ +

e
(7) 

Where, 
• Δ is the slope of the saturation vapor pressure at 

the mean daily temperature (FAO-56 Eq. 3-3), 
• α is the albedo of the hypothetical grass surface 

(=.23), 
• RS is the shortwave solar radiation at the Earth’s 

surface (Eq. 3), 
• Rnl is the net upwelling outgoing long-wave 

radiation (OLR) at the surface (Eq. 6), 
• G is the soil heat flux density (FAO-56 Eq. 5-2, 

with an assumed Leaf Area Index of 2.8), 
• γ is the Psychometric constant (FAO-56 Eq. 8), 
• T is the daily mean (i.e., 0.5(Tmax  

+Tmin))temperature in Kelvin, 
• u2 is the mean wind speed at 2 meters, set in the 

application via a slider control on the Crop ET 
tab (Fig. 2l), 

• ea is the actual vapor pressure (Eq. 4) , and, 
• es is the saturation vapor pressure (Eq. 5). 
 

6.5 Crop evapotranspiration 

The application derives crop evapotranspiration 
rates over arbitrarily defined periods for a number of 
crops listed in the selection box at the top of the ‘Crop 
ET’ Tab (Fig. 2j). These crop ET rates (ETc) are 
derived from a location’s derived reference grass ET 
rates (ETo ) using the FAO-56 single crop coefficient 
method (FAO-56 Eq. 58). 

 

OCC ETkET =          (8) 

 
Over the growing season crop ET is derived from the 
reference grass rates using kc values drawn from a 
growing season coefficient profile (Fig. 8b). That 
coefficient profile is in turn derived from three kc values 
defined during an initial crop growth period, a mid-
season period, and an end of season value. 
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7. Downloading, Operating Requirements and 
Instructions.  

 

The ICARDA Agro-Climate Tool can be downloaded 
at: 

                          
http://www.lbk.ars.usda.gov/WEWC/icarda.aspx. 

 
The application should be installed on a Windows PC 
with a Pentium III or better microprocessor and at least 
230 Mbytes of available hard disk space. Monitor 
screen resolution should be at least 1024 X 768 pixels 
but no more than 1920 X 1440 pixels.  The bright 

yellow text on the graphical user interface provides 
basic operating instructions. To access help for a 
specific control or graph, left mouse click on that object 
and hit ‘F1’. More detailed instructions for the 
application’s use can be found by left single-clicking on 
‘Instructions’ on the application’s upper left corner. 
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