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Abstract—The primary objective of this study was to assess the
water productivity (WP) of the annual (wheat, barley, and corn) and
biennial (alfalfa and Rhodes grass) crops cultivated under center-
pivot irrigation located over desert areas of the Al-Kharj region in
Saudi Arabia. The Surface Energy Balance Algorithm for Land
(SEBAL) was applied to Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) images to obtain evapotrans-
piration (ET) for assessing WP and irrigation performance (IP) of
crops. Crop productivity (CP) was estimated using Normalized
Difference Vegetation Index (NDVI) crop productivity models. The
predicted CP ( ) for corn varied from 12 690 to 14 060 kg/ha and
from 6000 to 7370 kg/ha for wheat. The for alfalfa and Rhodes
grass was 42 450 and 58 210 (kg/ha/year), respectively. The highest
predicted WP was observed in wheat ( ) and the
lowest was in alfalfa ( ). The deviation between
SEBAL predicted ET ( ) and weather station recorded ET
( ) was 10%. The performance of the prediction models was
assessed against the measured data. The overall mean bias/error of
the predictions of CP, ET, andWPwas 9.4%, , and 9.65%,
respectively; the root mean square error (RMSE) was 1996 (kg/ha),
2107 ( ), and 0.09 ( ) for CP, ET, andWP, respectively.
When CP was converted into variations between the actual and
predicted, the variations were 8% to 12% for wheat, 14% to 20%
for corn, 17% to 35% for alfalfa, 3% to 38% for Rhodes grass, and
4% for barley.

Index Terms—ASTER image, center-pivot irrigation system,
crop productivity, evapotranspiration, water use.

I. INTRODUCTION

A GRICULTURE is the largest consumer of freshwater in
the world [1]. In arid and semiarid environments,

competition for freshwater has been steadily increasing among
agricultural, domestic, and industrial sectors [2]. This competi-
tion will further increase with ever growing concerns of climate
change and its variability, population growth, economic devel-
opment, and environmental impacts. The demand for water in
the Middle East and North African (MENA) region that was

in 2000 is expected to increase to
[3] or [4] in 2050.

The rapid dwindling of finite water resources and the steady
increase in demand for food are the major obstacles for attaining
agricultural sustainability in SaudiArabia. Agriculture in general
and irrigation in particular consume over 80% of the freshwater
used in Saudi Arabia. In 2012, freshwater consumption for the
agricultural sector in Saudi Arabia was estimated at 86%—an
increase of 6% between 2008 and 2012 [5]. Water used for
irrigation is pumped from deep aquifers (up to 1000 m) to feed
center-pivot irrigation systems at enormous economic and
environmental costs. This situation creates an urgent need for
attaining agricultural sustainability, but it is extremely difficult to
maintain equilibrium between water and food securities. This
critical equilibrium emphasizes the Kingdom’s need for strategic
technologies and methods to drastically reduce the current
depletion rate of groundwater resources and optimize water
consumption without reducing agricultural production. This can
only be achieved through the efficient use of irrigation water.
Therefore, increasing water productivity (WP) in the agricultural
sector is crucial forwater conservation efforts that can serve other
competitive and critical needs such as domestic, industrial,
environmental, and recreational purposes.

WP is determined frombiological/economic yield of crops and
the quantity ofwater used to produce that yield. It is one of the key
indicators for evaluating the efficiencyofwater use in agriculture.
Any attempt to improve water use efficiency in irrigated
agriculture must be based on reliable estimates of seasonal/total
evapotranspiration (ET), which has a major impact on water
management. ET varies regionally and seasonally according to
weather conditions [6]. Understanding the variations in ET is
essential for the management of water resources, particularly in
hyper-arid regions of Saudi Arabia, where crop water demand
exceeds precipitation by several folds and requires irrigation
from groundwater resources tomeet the deficit. ET values are not
only useful for developing WP maps at field and regional scales,
but are also useful for precision irrigation purposes.

Satellite-based remote sensing is a robust, economic, and
efficient tool for estimating ET, WP, and the assessment of
irrigation performance (IP). Monitoring the temporal changes
of the key parameters used in these estimates through employing
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remote sensing techniques can significantly contribute to irriga-
tionmanagement [7], [8]. A remote sensing approach overcomes
constraints such as data scarcity and scale limitations and reduces
uncertainties by covering large spatial domains over time.

Various surface energy balance models such as Surface
Energy Balance Algorithm for Land (SEBAL) [9], Simplified
Surface EnergyBalance Index (S-SEBI) [10], Simplified Surface
Energy Balance (SSEB) [11], and Mapping Evapotranspiration
with Internalized Calibration (METRIC) [12] have been widely
used around the globe for computing ET. The SEBALmodel has
been predominantly used to estimate ET [9], [13], WP, and IP
[14]–[16]. SEBAL was applied to NOAA-AVHRR images to
compute the accumulated groundwater abstraction for a 30-year
period (1975–2004) in Saudi Arabia, and it was found to be
833 mm per year on average [17]. In another study, census data
and crop water requirement models were used for estimating a
nationwide abstraction of ground water in Saudi Arabia, which
was reported to be for 2010 [18].

In view of the very low WP of the majority of crops grown
under center-pivot irrigation systems in Saudi Arabia, there are
ample opportunities for significant improvement. One of these
opportunities was highlighted in a research study conducted to
explore the potential of adopting proper cropping pattern based
on water demand [19]. The results of that study showed great
potential for enhancing food and water security in Saudi Arabia
through producing alternate crops in regions where WP is high.
In viewof the pressing need to assess theWPof agriculturalfields
irrigated through center-pivot irrigation systems, this study was
undertaken with the goal of developing aWPM using Advanced
Space borne Thermal Emission and Reflection Radiometer
(ASTER) satellite imagery for alfalfa, Rhodes grass, corn, wheat,
and barley crops across spatial–temporal domains. The outcome
of the study will be helpful in determining both the spatial and
temporal variability in WP and in selecting the right crop at the
right cultivating season for the optimal use of groundwater
resources.

II. MATERIALS AND METHODS

A. Study Area

The studywas carried out on the Todhia Arable Farm (TAF), a
commercial farm with 47 fields utilizing center-pivot irrigation
systems spread across an area of 6967 ha. The farm lieswithin the
latitudes of and and within the
longitudes of and (Fig. 1).
Wheat, alfalfa, Rhodes grass, corn, and barley are cultivated to
meet the fodder demand of cattle farms. Table I shows the
cropping patterns and acreage of the study area. The crop acreage
under alfalfa and corn was 580 and 227 ha, respectively, in 2012,
and increasing to 900 and 640 ha, respectively, in 2013. The
acreage under Rhodes grass and wheat crops decreased from
1430 and 437 ha, respectively, in 2012, to 542 and 100 ha,
respectively, in 2013. However, barley was cultivated only in
2013. The season-wide cropping periods of all the investigated
crops is provided in Table II.

B. Ground Truth Data Collection

The geo-referenced data of the ground-measured Normalized
Difference Vegetation Index hereafter referred to as
and the ground-measuredLeafArea Index hereafter referred to as

were collected synchronous to the dates of the satellite
overpasses. The and ground truth data collec-
tion schedules are presented in Table III.

Of the 47 pivots of the farm, 11 pivots (23%) were considered
as samples for modeling. About 270 ground-based “point data”
of the and were collected from these 11 pivots;
approximately, 25 random sample points from each pivot. Of the
270 ground points, 162 points (60%) were used for the develop-
ment of NDVI crop productivity (CP) models and the remaining
108 (40%)were used for validation. The location of these sample
points is depicted in Fig. 1.

The data on the quantity of water applied (WA) and the CP of
the harvested crops for all the 47 pivots were obtained from the

Fig. 1. Location map of Todhia Arable Farm along with sample locations of ground measurements.
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TAFManager. Of these, 11 pivots (23%)were used formodeling
and the remaining 36 pivots were used for validation.

The was measured in the field on the dates of the
satellite overpass by using the crop circle (Model ACS-470)

of Holland Scientific, USA. The crop circle device was cali-
brated through configuration of a 670-nm filter in channel 1,
an NIR filter in channel 2 and a 550-nm filter in channel 3
of the sensor socket for measuring . Map mode

TABLE II
SOWING DATES OF CROPS IN TODHIA ARABLE FARM, SAUDI ARABIA

TABLE I
CROPPING PATTERN IN TODHIA ARABLE FARM FOR THE YEAR 2012 AND 2013

TABLE III
SCHEDULE OF GROUND TRUTH DATA COLLECTION FOR THE YEAR 2012 AND 2013
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measurements with 2 samples/s were used for field data
collection. To determine the field data coordinates, an
OmniSTAR GPS receiver (Model 9200-G2) was connected to
the Crop Circle at a baud rate of 9600. Field data measurements
were recorded with the Crop Circle positioned at 1 m above the
crop canopy.

The was determined on the dates of the satellite
overpass by using the plant canopy analyser (Model PCA-
2200) of LiCOR Biosciences, USA. To compute a single LAI
value at each location, one above canopy and five below canopy
readings were recorded. The above and below canopy measure-
ments were made by using a “fisheye” optical sensor with a 148
angle of view. Respective geo-locations were collected using
a handheld Trimble GPS receiver (Model-Geo XH 600). An
azimuth mask of a 180 view cap was used on a PCA-2200
sensor during data collection to obscure the bright sky and
thus eliminate the shading effect of the instrument operator.
The measured and were used to correct the
ASTER-derived NDVI and LAI and subsequently used in the
selection of anchor pixels (cold and hot) for the SEBAL model.

Meteorological datawere collected from an automaticweather
station (Vintage Pro2 wireless station) installed at the farm.
Meteorological data such as wind speed, humidity, hourly solar
radiation, and air temperature were used for processing the net
radiation ( ), soil heat flux (G), and sensible heat flux (H) used
for the SEBAL Model. The wind speed (u) at the time of the
satellite overpass was used for the computation of sensible heat
flux (H) and humidity; which were utilized for the estimation of
reference ET ( ). Solar radiation data were used for the
estimation of the image cloudiness and to adjust the atmospheric
transmissivity ( ). A data assimilation approach was used to
computeWP. CP and ET data were used to compute the finalWP
map (Fig. 2).

C. Processing of ASTER Images

Time seriesof level1B(ASTL1b)ASTER images (Appendix I)
pertaining to Paths 164 and 165 procured from Japan Space
Systems (Available: http://gds.ersdac.jspacesystems.or.jp) were
used in this study to generate the ET, CP, and WP map of the

TAF. Of the 15 procured images, 12 were from 2012 and the
remaining 3 were from 2013. These images covered the entire
range of crop phenology for all crops. In the case of wheat,
barley, and corn, the images covered the peak growth stage,
whereas the images covered all the growth stages between two
harvests/cuts for alfalfa and Rhodes grass. The details of the
ASTER data, such as the date of acquisition, the sun elevation
angle, the zenith angle, and the distance between sun and earth
(which were used in radiometric calibration), are presented in
Table IV.

The acquired images were georeferenced and radiometrically
calibrated by adopting a radiative transfer model using precali-
brated coefficients [20]. At sensor, temperatures (K) were ob-
tained from thermal bands, as described by Ghulam [21]. The
NDVI, which is widely used for the assessment of remotely
sensed data, was derived from the visible and near-infrared
bands [22].

D. Water Productivity Mapping

WP is defined as either the amount of yield produced per unit
volume ofwater (kg of ofwater) or as amonetary value
of the yield produced per unit volume of water [23]. Water
Productivity Mapping (WPM) was achieved in three steps:
1) Crop Productivity Mapping (CPM), 2) Water Use (ET)
Mapping (WUM) and 3) Water Productivity Mapping (WPM)
[23]. Field-measured crop productivity data were related to the
NDVI to obtain CP models. The best fit CP models were
extrapolated to larger areas by using remotely sensed data to
obtain CPM. WUM was prepared by using crop ET. The
(per day) was obtained from ASTER data by applying the
SEBAL model [9]. WPM was generated for the entire TAF by
dividing the CPM by the WUM.

1) Crop Productivity Mapping:CP is a very important end-of-
season observation that integrates the cumulative effect of
weather and management practices over the entire crop
growth season. A remote sensing approach provides both CP
assessments and possible variations across fields. Linear
relationships between CP and the NDVI at the crop heading
stagewere observed [24]. In this study, a scatter plot for each crop
was drawn between the corrected ASTER-derived NDVI
( -axis) and CP ( -axis) for the development of CP prediction
models. The NDVI at the ear-head emergence stage in wheat and
barley, the flag leaf stage in corn, and the flowering stage in
alfalfa and Rhodes grass were considered for CP estimations.

The CP model was developed using (1)

where Y is the predicted CP (kg/ha), X is the NDVI, and and
are the constants.

MeasuredCP ( ) datawere collected from theTAF records
and correlated with the respective field’s NDVI derived from
ASTER images. Remote sensing-based CP ( ) of corn,
barley, and wheat was computed by multiplying the above
ground biomass (AGB) by the Harvest Index (HI), a function
of the NDVI [25].

Hay yield monitor was used to collect the hay yields for
alfalfa and Rhodes grass. A hay yield monitor Model 880 of

Fig. 2. Water productivity prediction flow chart.
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Harvest Tech., USA, was installed on a large square baler
(Claas 3000) for recording the CP data at the time of baling.
The hay yield maps were prepared by interpolating the filtered
point data to grids using an ordinary kriging tool
of ESRI GIS (ver. 2010) [26]. During the preparation of the
hay yield maps, low- or high-yielding points associated with
significant turning and manoeuvring of the baler were removed
[27], as were the short segments, which were affected by start or
end-pass delays [28].

2) Water Use Mapping: WUM was accomplished by using
cropET and assuming that the amount ofwater used by cropswas
equal to seasonal ET (ETactual). The SEBAL method was used
to compute the ETactual on a pixel-by-pixel basis for the
instantaneous time of satellite image as the residual amount of
energy remaining from the classical energy balance (2) [9]

where is the latent heat flux (an instantaneous value for the
time of the satellite overpass), is the net radiation at the
surface, G is the soil heat flux [calculated using (11)], and H is
the sensible heat flux to the air [calculated using (12)]. The unit
for all fluxes was . The SEBAL computes as a
“residual” of net radiant energy after G and H are subtracted.

The first step in the SEBAL procedure is to compute by
using the surface radiation balance equation (3)

where is the net radiation at the surface, is the surface
albedo, is the incoming short-wave radiance, is the
incoming long-wave radiance, is the outgoing long-wave
radiation, and is the surface emissivity. All of these parameters
were accomplished in a series of steps using the ERDAS Imagine
model maker tool as described in the SEBAL manual [29].

Surface albedo: Georectified ASTER VNIR bands were sub-
jected to Top-Of-Atmosphere (TOA) reflectance. This enabled
the conversion of image digital numbers (DN) to at-sensor
radiance ( ) and subsequently to spectral reflectance ( ) by
adopting the procedures of the ASTER User Manual [20]. The
spectral reflectance of each band was then used to compute the
Albedo-top of the atmosphere ( ) by utilizing the two visible
band albedos (4) of Liang [30] and the computed surface albedo
( ) by correcting the (5)

where and are the VNIR 1 and VNIR 2 bands of the
ASTER image, respectively, and

where the path radiance is the average portion of the incoming
solar radiation across all bands that is back-scattered to the
satellite before it reaches the earth’s surface and is the
atmospheric transmissivity. In this study, path-radiance value
was considered as 0.03 [31]. The values assume clear sky and
relatively dry conditions and are obtained by using an elevation-
based relationship: [32], where is
the elevation of the weather station above sea level (m).

Incoming short-wave radiation ( ): The incoming short-
wave radiation is the direct and diffused solar radiation flux that
actually reaches the earth’s surface ( ); this was calculated
assuming clear sky conditions as a constant for the entire
image (6)

where is the solar constant ( ), is the cosine
of the solar incidence angle, is the inverse squared relative
earth-sun distance, and is the atmospheric transmissivity.

Outgoing long-wave radiation ( ): The outgoing long-
wave radiation is the thermal radiation flux emitted from the
earth’s surface to the atmosphere ( ); this was computed by
applying the Stefan–Boltzmann equation (7)

where is the broad-band surface emissivity (dimensionless),
is the Stefan–Boltzmann constant ( ), and

is the surface temperature (K). The surface emissivity ( ) was
computed using an empirical equation where the NDVI > by
inputting the NDVI and the LAI, as described in the SEBAL user
manual [29]. Subsequently, the surface temperature ( ) was
computed from the ASTER TIR band 13 [21] and used in the
computations.

Incoming long-wave radiation ( ): The incoming long-
wave radiation is the downward thermal radiation flux from
the atmosphere ( ) that was computed using the Stefan–
Boltzmann equation (8)

TABLE IV
CHARACTERISTICS OF ASTER DATA USED FOR THE STUDY
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where is the atmospheric emissivity (dimensionless), is the
Stefan–Boltzmann constant ( ), and is
the near surface air temperature (K). was calculated using
(9) [23]

where is the atmospheric transmissivity.
Substituting (9) into (8) and using from the selected cold

pixel for provides the following equation (10):

Two anchor (hot and cold) pixels were selected [29] to fix
boundary conditions for the energy balance. The cold pixel was
selected as a wet, well-irrigated crop surface having full ground
cover by vegetation. The surface temperature and near-surface
air temperature were assumed to be similar at this pixel. The hot
pixel was selected as a dry, bare agricultural field where ET was
assumed to be zero.

Soil heat flux ( ): G is the rate of heat storage into the
soil and vegetation due to conduction. It was obtained by

using the empirical equation (11) representing values near
midday [34]

where is the surface temperature ( ), is the surface
albedo, the NDVI is the Normalized Difference Vegetation
Index, and is the net surface radiation flux.

Sensible heat flux ( ): TheH is the rate of heat loss to the air by
convection and conduction due to a temperature difference. It
was computed by using (12) for heat transport

where is the air density ( ), is the specific heat of air
(1004 J/kg/K), (K) is the temperature difference, and is
the aerodynamic resistance to heat transport (s/m). Therefore, H
is a function of the temperature gradient, surface roughness, and

TABLE V
SUMMARY OF GROUND MEASURED NDVI AND LAI

TABLE VI
NDVI MODELS USED FOR PREDICTING CROP PRODUCTIVITY
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wind speed. Equation (12) is difficult to solve because of two
unknowns and . To facilitate this computation, we
utilized the two selected “anchor” pixels (where reliable values
for H can be predicted and a estimated) and thewind speed at
a given height (which was obtained from the weather station) as
described in the SEBAL manual [29].

The SEBAL procedure (2) was completed by computing the
net surface radiation flux ( ) using the surface radiation balance
equation (3), the soil heat flux (11), and the sensible heat flux
(12). After , G, and the final value of H were established, the
latter after an iterative process to consider atmospheric stability
effects, the Latent Heat (LE) was then calculated as a residual.

This is the energy equivalent of the instantaneous ET at the time
of satellite overpass. The evaporative fraction (EF) for each pixel
was calculated.

The , i.e., the rate of LE loss from the surface due to ET, is
considered an instantaneous value for the time of satellite
overpass used to compute instantaneous ET ( ) and refer-
ence evaporative fraction ( ) values by applying (13)
and (14)

where is the instantaneous ET (mm/h), 3600 is the time
conversion from seconds to hours, and is the latent heat of
vaporization or the heat observed when a kilogram of water
evaporates (J/kg); and

where derives from (13) (mm/h) and is the crop-
coefficient ( ) of a known crop. This study considers the of
alfalfa as the at the time of the image overpass. The daily
values of ET ( ,mm/day)were computed using (15) and then
extrapolated to a growing season or for a particular period
employing (16), as described in the SEBAL manual [29]

where is the cumulative 24-h for the day of the
image, which is calculated by adding the hourly values over
the day of the image and is the reference evaporative
fraction

where the is the representative for the growing
season or period, is the daily , and is the number of
days in the period. Units for are computed in mm,
whereas the is in mm/day.

TABLE VII
PHENOLOGY OF BIENNIAL CROPS CORRESPONDING TO ASTER IMAGE

ACQUISITION DATES

TABLE VIII
PHENOLOGY OF ANNUAL CROPS CORRESPONDING TO ASTER IMAGE

ACQUISITION DATES
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III. RESULTS

A. and

The and were examined across the crops
during the study period (Table V). The values ranged
between 0.12 (initial stage) and 0.82 (canopy closure stage). The

value of alfalfa was 0.62 ( ) and 0.51 ( ) in
2012 and 2013, respectively. Meanwhile, Rhodes grass recorded
a high value of 0.65 in 2012 and the least
value of 0.22 in 2013. The of seasonal crops ranged
between 0.63 (wheat) and 0.71 (corn) in 2012; however, it varied
from 0.53 (barley) to 0.63 (corn) in 2013. The varied
between 0.21 (initial stage) and 6.04 (canopy closure stage). The

in the alfalfa crop was 4.51 ( ) and 4.02 ( ) in
2012 and 2013, respectively, whereas the for Rhodes
grass was 4.50 ( ) and 1.00 ( ) in 2012 and 2013,
respectively. In the annual crops, a higher was observed
in wheat ( ), followed by corn ( ) during
the year 2012. However, in 2013, corn recorded a higher
( ) compared to barley ( ) and wheat
( ).

B. CP Models

The best relationship between CP and NDVI was obtained
when the crops were in mid-season (growth stage), as presented
in Table VI. In the annual crops, the best response was observed
on the Julian days of 43 (2013), 169 (2012), and 64 (2012) for
barley, corn, and wheat crops, respectively, when the crops were
at their peak growth stage. In the biennial crops (alfalfa and
Rhodes grass), which have a growth period of 30 to 45 days
between the two harvests, the best response was observed on the

Julian day 201 and 281 of 2012 for Rhodes grass and alfalfa,
respectively (Tables VII and VIII).

The CP models were validated against the actual CP data
recorded on the farm; there was good correlation (Table VI). The
root mean square error (RMSE) between the farm recorded and
model predicted CP was high in Rhodes grass (24%), followed
by alfalfa (21%), corn (18%), and barley (16%), with the least
RMSE observed in wheat (15%). However, similar RMSE values
were observed in the cross-validation of the models (Table VI).

C. CP (kg/ha/season)

The results of the predicted and actual ET/crop water use CP
and WP for both annual and biennial cops are presented in
Table IX. It was observed that predicted CP ( ) varied
significantly in both temporal and spatial scales. For annual
crops, the average for corn was 13 510 and 14 060 for
season 1 and 2, respectively, in 2012 and 12 690 in 2013.
However, the actual recorded CP ( ) for corn was 10 930
and 11 190 for season 1 and 2, respectively, in 2012, and 10 900
in 2013. Meanwhile, the average for the wheat crop was
6000 and 7370 for season 1 in 2012 and 2013, respectively. But,
the for the wheat crop was 5530 and 6510 for season 1 in
2012 and 2013, respectively. In the case of barley, the farm
recorded mean was 7210 kg/ha, whereas the was
6910 kg/ha, resulting in a mean error of 4.16%.

For the biennial crops, the (kg/ha/year) for alfalfa was
42 450 for 2012 and 15530 for 2013 (up toMay 19). The for
the alfalfa crop was 35 100 for 2012 and 21 000 for 2013.
Although the average for Rhodes grass was 58 210 for 2012
and 24 580 for 2013 (up to May 19), the for Rhodes grass
was 60 390 for 2012 and 15 140 for 2013.

TABLE IX
PREDICTED AND ACTUAL CROP PRODUCTIVITY, EVAPOTRANSPIRATION/WATER USE AND WATER PRODUCTIVITY

, ASTER predicted crop productivity; , ASTER predicted evapotranspiration; , ASTER predicted water productivity; , TAF
recorded crop productivity; WA, Actual quantity of water applied; , actual water productivity.
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D. Water Use (ET) Mapping

ET values were estimated in this study through the analysis of
ASTER images using the SEBAL model. The accuracy of the
ASTER predicted ET ( ) data using the SEBAL model was
tested against the weather station recorded ET ( ) data. The
distribution pattern of and is illustrated in Fig. 3. Both
the and followed a similar pattern throughout the study
period. The correlation between and was further
investigated through the regression analysis technique. The
results showed a strong linear relationship between and

, with an of 0.78 (Fig. 4). Themean deviation of the
from the was found to be 10.49%. The (Fig. 5) was
then used to assess IP for all of the test crops. The mean values of
both and the actual quantity of irrigation WA are presented
in Figs. 6 and 7.

During the 2011–2012 season, the WA to alfalfa, Rhodes
grass andwheat crops was lower than the required quantity as per
the . However, during the 2012–2013 season, alfalfa, wheat,
and barley crops were irrigated with more than the required
quantity of water. Conversely, corn received a higher than
required quantity of water during 2011–2012 and a lower than
required quantity during 2012–2013.

The deviation of from the WA to all of the crops was
determined in terms of overall mean error (Fig. 8). The results

Fig. 6. ASTERpredictedET( ) and thewater applied (WA) to biennial crops.

Fig. 5. SEBAL model-based ASTER predicted ET (mm/day) for the study site.

Fig. 4. Regression between ASTER predicted ( ) and weather station
recorded ET ( ).

Fig. 3. Temporal variation in ASTER predicted ( ) and weather station
recorded ET ( ).

Fig. 7. ASTER predicted ET ( ) and the water applied (WA) to annual crops.
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indicated that the accuracy of was higher for alfalfa, corn,
and Rhodes grass crops and lower for wheat and barley.

E. Water Productivity

As depicted in Fig. 9, the prediction of WP ( ) was more
accurate for alfalfa andRhodes grass crops in 2012. In alfalfa, the

was versus an actual WP ( ) of
. Meanwhile, the for Rhodes grass was
versus a of . In 2013 (Fig. 10),

the was 2.01, 1.07, 0.68, 0.55, and for wheat,
Rhodes grass, barley, corn, and alfalfa, respectively, versus

values of 1.63, 0.69, 0.55, 0.51, and 0.43 for the same
sequence of crops.

IV. DISCUSSION AND CONCLUSION

As indicated by the regression models, the CP of all the crops
showed a visible and significant trend across a range of NDVI
values. The values were moderate and ranged from 0.5211

(Rhodes grass) to 0.6214 (corn). This is one of the drawbacks of
statistical expressions for relationships between the NDVI and
the CP [35]. This was also evident in the cross-validation of the
models, where the CP data were particularly inconsistent for
forage crops due to bias in the selection of the proper growth
stage (duration between two harvests) for the CP predictions.
Conversely, the seasonal performance of different species,
phenology, spectral response, and the establishment of time-
dependent relationships with crop vigour and productivity
played a major role in developing yield models [36], [37].
Despite this, the obtained values concurred with the earlier
reported values. Forexample,inthecaseofthecorncrop, thestrong
relationship of theNDVI and theCPestimates occurred in the June
(i.e., Julian day, 169) image, with an value of 0.5647; this was
considerably higher than the reported values ( )
in a previous study [38], but lower than that reported in another
study ( ) [39]. This research gained further support
from previous studies on wheat crop, where the lowest CP
prediction accuracy was obtained; accurate wheat CP predictions
were possible using only one image, provided the image was
acquired toward the middle of the growing season when most
wheat [40] and corn [41] crop canopies were fully developed.

The results of this study showed that spatial distribution of ET
could be predicted with an overall accuracy of 90%. The results
of the concur with the results of another study that used the
SEBAL model to estimate ET in the Philippines, where the ET
values deviated by 9% from the ETc (Penman-Monteith) for the
ASTER sensor [42]. The obtained results were better than
expected, as most remote sensing techniques used for estimating
evaporation (E) have accuracies of 70%–85% compared with
ground-based measurements [9]. In another study that summa-
rized the accuracy of ET prediction using the SEBAL model
(although under different climatic conditions), the accuracy at
field scale was 85% for 1 day and reached 95% on a seasonal
basis, whereas the average accuracy of annual ET for large
watersheds was observed to be 96% [14].

On an annual/seasonal basis, a deviation of approximately 19%
was observed between the and . When focusing on a
finer timescale, themodel resulted in a large deviation (i.e.,
to ). The model overestimated the for the ASTER
images of June 1, 2012 (63%); June 17, 2012 (47%); July 3 (47%);
February 13 (63%); and March 16, 2013 (34%), whereas under-
estimated the for the March 20, 2012 (49%); April 21, 2012
(4%); and August 4, 2012 (16%) images. This might be due to the
gradation of individual pixels’ evaporative response, which can
reflect upon the diversity of crops, growth stages, and gradients in
soil moisture conditions across the fields [43], [44].

The WP of alfalfa observed in this study ( )
concurred with the previously reported values (

) [45]. The harvests made in the cooler months of
January–March 2012, November 2012, and February 2013
recorded a higher WP ( ) than the harvests
made inwarmermonths (i.e., 0.23–0.40). It is evident that alfalfa,
being a plant, is adapted to cuttingsmade in cooler seasons but
loses its efficiency during the summer season [46]. This large
amount of variation may be attributed to the influence of both
spatial and seasonal climatic variations on ET, alfalfa produc-
tivity, and water use efficiency. Similar results were reported

Fig. 8. Accuracy assessment of predicted ET ( ) vs. Water applied (WA).

Fig. 9. ASTER predicted ( ) vs. Actual ( ) water productivity for 2012.

Fig. 10. ASTER predicted ( ) vs. Actual ( ) water productivity for 2013.
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when comparisons were made between CP and ET for individual
harvests, where the relationship varied across the growing season
and changed depending on the harvest time [47]. A better
correlation between the and field recorded for the
entire farm was observed, with an of 0.7967 ( < ) as
shown in Fig. 11. Meanwhile, among the three annual crops,
there were considerable differences between the and
in wheat and barley ( plants) but not in corn ( plant). In the
case of wheat, the ( ) values of 0.80–2.01 closely
resembled the values of 0.1–2.07 [48], but were higher
than the values of 0.51–1.50 reported by others [49]–[52]. The
lower WP observed in the earlier studies could be due to the
lower CP of 4.3–4.88 t/ha [49], [50] compared to 6.0 t/ha in
the present study. For corn, the ( )
concurred with the WP ( ) reported earlier from
Iran [53]. However, there were other reports with much higher
WP values of [54], [55]. The WP values of

observed in Rhodes grass resembled earlier
reported values of [56] and [57],
but were lower than the values ( ) reported by
ICARDA [58]. In the case of barley, the and values
were 0.68 ( ) and 0.55 ( ) , respectively. The
values were within the range of values reported in Mediterranean
environments [59], [60].

The performance of the prediction models was assessed
against the recorded/measured data (Table X). The overall
percentage bias values for CP, ET, and WP were 9.4%,

, and 9.65%, respectively, whereas the RMSE values
were 1996 (kg/ha), 2107 ( ), 0.087 ( ) for CP, ET,
and WP, respectively. When converted into variations between
the actual and the predicted CP, the variations were 8%–12% for
wheat, 14%–20% for corn, 4% for barley, 17%–35% for alfalfa,
and 3%–38% for Rhodes grass. Although the performance of the
models varied among crops and across seasons/years, the pre-
diction bias values were within acceptable limits.

Based on the results of this study, it can be inferred that WP of
wheat was consistently higher than all the other studied crops.
Further, among the fodder crops, corn recorded higher WP
compared to extensively cultivated crops such as alfalfa and
Rhodes grass. The results of this research work were shared with
few agricultural companies. As a result, there was a shift in the
cropping pattern on TAF in 2013, wherein the area under corn
increased and the area under Rhodes grass decreased as com-
pared to the previous year.

This study also concludes that the SEBAL algorithm using
ASTER images provided realistic estimates of ET, CP, and WP
for the crops (corn, wheat, barley, Rhodes grass, and alfalfa)
cultivated under center-pivot irrigation system in Saudi Arabia.
There was concurrence between the predicted and actual values
of CP and WP. However, the predicted daily ET values signifi-
cantly deviated from the meteorological data, particularly in
summer months (June–September); this issue warrants further
empirical research.
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