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a b s t r a c t

Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security,
management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agri-
culture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of
paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the
unique physical features of paddy rice during the flooding and transplanting phases and use vegetation
indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding
phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface tem-
perature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to deter-
mine the temporal window of flooding and rice transplantation over a year to improve the existing
phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies,
and sparse vegetation) with potential influences on paddy rice identification were removed (masked out)
due to their different temporal profiles. The accuracy assessment using high-resolution images showed
that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (pro-
ducer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable
accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area
and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and
optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice
fields in temperate and cold temperate zones, the northern frontier of rice planting.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Rice is a major staple food for almost 50% of the world’s popu-
lation (Kuenzer and Knauer, 2013), and paddy rice fields account
for more than 12% of the global cropland area (FAOSTAT, 2010).
Asia has the largest paddy rice fields (Maclean and Hettel, 2002),
and produced more than 90% of the rice in the world in 2011
(Kuenzer and Knauer, 2013). Global emissions of rice-based
methane total 21–30 teragrams per year (Sass and Cicerone,
2002) and account for more than 10% of the total methane flux

in the atmosphere (Ehhalt et al., 2001). Irrigation for agriculture
consumes approximately 70% of the global fresh water with-
drawals (Samad et al., 1992), and approximately one-quarter to
one-third of the developed freshwater resources in the world are
used for paddy rice irrigation (Bouman, 2009). The high water
demands of irrigated agriculture have raised concerns about
improving water resource management, including water conserva-
tion and water quality protection (Kuenzer and Knauer, 2013).
Water management for paddy rice fields also affects methane
emissions (Sass et al., 1999). Recently, paddy rice fields are recog-
nized as a key risk factor for transmission of highly pathogenic
avian influenza A (H5N1) virus (Gilbert et al., 2014; Gilbert et al.,
2008), as paddy rice fields are an important habitat for
free-ranging ducks and wild waterfowl in winter where the avian
influenza virus may be transmitted. Therefore, it is important to
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monitor and map paddy rice fields at regional and global scales in
an effort to enhance our knowledge of food security, greenhouse
gas emissions, water resource management, and transmission of
infectious diseases.

Satellite remote sensing is recognized as a viable tool to map
paddy rice fields, based on either optical or synthetic aperture radar
(SAR) images. Although SAR data are not impacted by clouds or solar
illumination, the SAR-based approach has not been used for
large-scale paddy rice mapping due to limited data availability
(Bouvet et al., 2009; Dong et al., 2006; Miyaoka et al., 2013; Wu
et al., 2011; Yang et al., 2008).Many studies have used one to several
optical images (e.g., Landsat) to map paddy rice at local scales with
supervised or unsupervised classification methods (Li et al., 2012;
Yoshikawaand Shiozawa, 2006). Optical sensorswithhigh temporal
resolutions (daily revisits) such as the Advanced Very High
Resolution Radiometer (AVHRR), Système Pour l’Observation de la
Terre (SPOT) (Kamthonkiat et al., 2005; Thi et al., 2012), and
Moderate Resolution Imaging Spectrora diometer (MODIS), have
also been used to map paddy rice fields at regional scales, based
on the temporal characteristics of paddy rice fields (Chen et al.,
2012; Gumma et al., 2011; Nuarsa et al., 2012; Peng et al., 2011;
Son et al., 2013; Xiao et al., 2006, 2002b, 2005).

Rice is grown in flooded soils, and paddy fields are a mixture of
openwater andgreen riceplants during theearlypart of the growing
season (transplanting phase). These characteristics can be readily
identified using temporal profiles of vegetation indices such as the
Land Surface Water Index (LSWI), Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI).
Spectral signature analysis has shown that the LSWI values can tem-
porarily be greater than the NDVI or EVI values during the flooding
and transplanting phases (Xiao et al., 2006, 2002b, 2005). Based on
this unique feature of paddy rice fields during the early period of
the growing season,wedeveloped an algorithm to identify and track
the image pixels that were flooded and transplanted with seedlings
over time (Xiao et al., 2006, 2005). The algorithm was used to map
paddy rice at regional scales in southern China, South Asia, and
Southeast Asia, where the air temperature stayed above 0 �C for
most of the year and there is little or no snow cover, using an
8-day MODIS dataset in 2002 (Xiao et al., 2006, 2005).

Paddy rice has an expansion trend in mid- and high-latitude
regions, such as northeastern China, where paddy rice croplands
have rapidly expanded in the last decade. According to statistical
data, the area of paddy rice fields in this region increased from
2.57 � 104 km2 in 2000 to 4.33 � 104 km2 in 2010, which repre-
sents an increase of approximately 68%. By 2010, paddy rice fields
in the region accounted for more than 10% of the total rice agricul-
tural area in China. As a result of this rapid growth, northeastern
China has become a major food production region in China (Liu
et al., 2013). The expansion of paddy rice could raise several envi-
ronmental issues regarding water resources, soil erosion, bird habi-
tats, and biodiversity because most paddy rice fields were
converted from natural wetlands or land that was previously used
to grow upland crops. Information and geospatial data about the
area and spatial patterns of paddy rice agriculture in northeastern
China is urgently needed because there is limited knowledge about
their current distributions in this high-latitude region.

Direct application of the MODIS-based algorithms (Xiao et al.,
2006, 2005) in temperate zones is likely to be complicated by snow
and ice cover during the long winter season, by snowmelt in
spring, and by the short plant growing season; and it is necessary
to precisely identify the time period of the flooding and transplant-
ing phases. Several previous studies have attempted to define the
flooding and transplanting periods based on rice growth calendar
data (such as the transplanting period) from agricultural meteoro-
logical stations (Peng, 2009; Peng et al., 2011; Shi et al., 2013; Sun
et al., 2009). The rice growth calendar data were available from

scattered agricultural meteorological stations, but there were large
uncertainties when the station data were interpolated to regional
or national scales. In addition, this station-based approach cannot
be used for regions that have no agricultural meteorological sta-
tions. The determination of the transplanting phase is needed for
the paddy rice mapping in the high latitude area where limited
efforts have been made.

The objective of this study is twofold: (1) to develop an
improved algorithm that combines land surface temperature
(LST) and vegetation indices from MODIS sensors to map paddy
rice fields in temperate and cold temperate zones, and (2) to quan-
tify the area and spatial distribution of paddy rice agriculture in
northeastern China in 2010 through the use of the improved algo-
rithms and MODIS data in 2010. To achieve these goals, we first
used MODIS-based land surface temperature data at a 1-km spatial
resolution to determine the period that is suitable for flooding and
rice plant transplanting over the course of a year for individual pix-
els. We then used vegetation indices to identify the pixels that con-
tained a mixture of green rice plants and surface water within that
period. The resultant paddy rice map at a 500-m spatial resolution
was validated with samples from the very high resolution imagery
in Google Earth and compared with the Landsat-based National
Land Cover Dataset (NLCD) (Liu et al., 2014) and agricultural statis-
tical data in 2010. This improved algorithm (robust, simple, and
automated) will contribute to our future efforts to generate annual
paddy rice maps and provide more accurate and updated data for
studies of food security, water management, greenhouse gas emis-
sions, and disease transmission.

2. Materials and methods

2.1. Study area

Northeastern China is composed of Heilongjiang, Jilin, and
Liaoning Provinces (Fig. 1). It is located in a transition area between
mountains and plains with an average elevation greater than
400 m (Fig. 1). The Lesser Khingan Mountain Range is located to
the north and extends from the northwest to the southeast, and
the Changbai Mountains are located on the southeast and extend
from northeast to southwest. The plains are mainly located in
the northeastern, western, and southern parts of the region and
include the Sanjiang Plain, Songnen Plain, and Liaohe Plain. The
river system is large and extensively distributed in the northeast-
ern region, including the Heilongjiang River, Wusuli River,
Songhua River, Nen River, and Liao River. The region has cold tem-
perate and humid/sub-humid climate. The average annual precip-
itation is approximately 500–800 mm, which mostly falls in July
and August. The annual accumulated air temperature above 0 �C
ranges from 2000 to 4200 �C d, and the annual accumulated air
temperature above 10 �C ranges from 1600 to 3600 �C d. The num-
ber of frost-free days varies between 140 d and 170 d. Due to tem-
perature limit, there is only one crop system in this region.

This region is an important area of agricultural production in
China; according to the National Land Cover Dataset (Liu et al.,
2014), it had a total cropland area of 29.97 � 104 km2 in 2010
(Table 1), which accounted for 16.8% of the total cropland area in
the country. The main crop species include soybean, corn, wheat,
and paddy rice. Paddy rice accounted for 15.5% of the cropland in
this region in 2010, and the region provided 10.2% of the paddy rice
yield in China (Table 1) (Liu et al., 2014). The paddy rice fields are
mainly distributed in the plain areas along the rivers.

2.2. MODIS data and preprocessing

The MODIS Land Science Team provides an 8-day composite
MODIS Surface Reflectance Product (MOD09A1) at 500-m
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resolution (Vermote and Vermeulen, 1999). It includes seven
bands: bands 1 (red: 620–670 nm), 2 (near infrared 1: 841–
876 nm), 3 (blue: 459–479 nm), 4 (green: 545–565 nm), 5 (near
infrared 2: 1230–1250 nm), 6 (shortwave infrared 1: 1628–
1652 nm), and 7 (shortwave infrared 2: 2105–2155 nm).
Standard MODIS products are organized in a tile system using a
sinusoidal projection, and each tile covers an area of
1200 km � 1200 km (approximately 10� latitude by 10� longitude
at the equator).

Northeastern China is covered by five tiles (H25V03, H26V03,
H26V04, H27V04 and H27V05) of MOD09A1 data. We downloaded
the five tiles for 2010 (46 composites per year) from the USGS
EROS Data Center (https://lpdaac.usgs.gov/). Our MODIS prepro-
cessing procedure included three components: (1) identifying
clouds and cloud shadows, (2) calculation of spectral indices, and
(3) gap-filling of vegetation indices.

We identified cloud cover and cloud shadows in two steps. First,
we used the data quality information (the quality control flag
layer) in the MOD09A1 products to extract the clouds and cloud
shadows from each image. Second, we applied an additional
restriction in which pixels with a blue reflectance of P0.2 were
also labeled as cloudy (Xiao et al., 2006, 2005) (round symbols in
the LSWI curves in Figs. 2b and 3). Therefore, 46 maps of cloud
and cloud shadow covers were generated. For each pixel, any
8-day composite that was identified as cloud and cloud shadow
covers was excluded and gap-filled for further analyses.

The individual spectral bands in each of the 8-day composite
surface reflectance MOD09A1 datasets were used to calculate four
spectral indices: (1) NDVI, (2) EVI, (3) LSWI, and (4) normalized dif-
ference snow index (NDSI). Both NDVI and EVI are related to the
vegetation canopy. NDVI has a saturation issue when it is used
for closed canopies, and it is also sensitive to atmospheric

Fig. 1. Digital elevation model (DEM) of northeastern China. The study area covers three provinces in northeastern China.

Table 1
Summary of land area, paddy rice agriculture, and upland cropland from the Natural
Land Cover Dataset (NLCD) in 2010 for the three provincial administrative units in
northeastern China.

Province Land
area
(km2)

Area of
upland
cropland
(km2)

Area
of
paddy
rice
(km2)

Percent of rice
area with
>=20%
fractional
cover in 1-km
pixels (%)

Median
percent of
paddy rice
within
1-km pixels
(%)

Heilongjiang 452,782 135,645 26,701 95 42
Jilin 190,872 64,975 10,534 89 24
Liaoning 145,558 52,597 9237 93 32
Total 789,212 253,218 46,471 93 34

G. Zhang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 106 (2015) 157–171 159

https://lpdaac.usgs.gov/


conditions and soil background (Huete et al., 2002; Xiao et al.,
2003b). EVI takes residual atmospheric contamination and variable
soil and canopy background reflectance into account (Huete et al.,
2002, 1997) because the blue band is sensitive to atmospheric con-
ditions. LSWI was shown to be sensitive to equivalent water thick-
ness (EWT; g H2O/m2) (Maki et al., 2004; Xiao et al., 2002a,b)
because the SWIR band is sensitive to leaf water and soil moisture.
NDSI is widely used for snow detection (Hall et al., 1995, 2002).

Bad-quality observations (clouds and cloud shadows) in time
series vegetation indices need to be gap-filled. When the continu-
ous gaps contained no more than three consecutive points, the lin-
ear interpolation approach was used to gap-fill the time series
data. More than three consecutive missing observations were lim-
ited in our study area (temperate zone) as the effects of clouds and
clouds shadows in the growing season are much less than in trop-
ical regions. While snow effects are severe in winter, we just set
the bad observations as no-data since it is out of the growing

season. We did not interpolate bad-quality observations if they
occurred during the first or last 8-day composite periods in a year.

The MODIS Land Science Team provides 8-day composite
MODIS land surface temperature products at 1-km resolution, such
as MOD11A2 (from the Terra satellite) and MYD11A2 (from the
Aqua satellite). The LST data include daytime (local time
�10:30 AM from Terra and �13:30 PM from Aqua) and nighttime
(�22:30 PM from Terra and �01:30 AM from Aqua) temperature
observations. Due to remarkable daily temperature variation in
the high latitude areas, frost status and crop planting are deter-
mined by daily minimum temperature. Thus, we used the night-
time temperature from MYD11A2 in 2010 to define the thermal
growing season (Linderholm et al., 2008) and the starting time
window of the flooding and rice transplanting; specifically, the
starting date of stable temperatures above 0, 5 and 10 �C (Fig. 4)
were calculated. The digital number values (DN) from MYD11A2
were converted to LST with centigrade unit values based on the

Fig. 2. (a) The annual variations of daily maximum temperature, daily minimum temperature, and daily precipitation in 2010 using one agricultural meteorological site as an
example (Hulin site: 132.97�E, 45.77�N); (b) The seasonal dynamics of the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Land Surface
Water Index (LSWI) and the MODIS-based nighttime land surface temperature from a paddy rice point in 2010 (132.825�E, 45.737�N); (c) the calendar for paddy rice growing
systems in 2010 at the Hulin station based on the agricultural phenological observations data; (d) the calendar of flooding and transplanting for paddy rice for all the sites in
the study area based on the MODIS LST data; (e) the picture of flooding and transplanting in a continuous paddy rice point. The hollow triangular and round symbols in (b)
mean the cloud and cloud shadow from the MODIS quality layer and blue band >= 0.2, respectively, which are labeled on the LSWI curves.
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following formula: LST (�C) = DN � 0.02–273.15 (Wan, 2008; Wan
et al., 2002). The LST data with bad observations in a time series
were also gap-filled using the linear interpolation approach (Pan
et al., 2015). The resultant maps of the starting date of stable tem-
peratures above 0, 5 and 10 �C were resampled to 500 m using the
nearest neighbor method to be spatially consistent with the vege-
tation index maps from MOD09A1.

2.3. Algorithms to identify inundation and paddy rice fields

The temporal dynamics of paddy rice fields can be characterized
by three phases: (1) flooding and rice transplanting, (2) rapid plant

growth and canopy closure after transplanting, and (3) the fallow
period after the rice harvest (LeToan et al., 1997). These three
phases are illustrated in Fig. 2. In the first phase, the land surface
is covered by a mix of paddy rice plants and water, as observed
by sensors and people (Xiao et al., 2002c) (Fig. 2e). In the second
phase, the rice canopy covers most of the surface area approxi-
mately 50–60 d after transplanting (Xiao et al., 2006, 2005), and
sensors and people can only see rice canopy. At the end of the
growth period prior to harvesting (the ripening stage), the rice
canopy has lower leaf and stemmoisture contents and more senes-
cent leaves (Xiao et al., 2006, 2005) (Fig. 2). In the third phase, the
land surface is a mixture of rice plant residuals and soil.

Fig. 3. The seasonal dynamics of the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) of (a) paddy rice
(47.836�N, 133.179�E), (b) dryland (upland crop, 47.553�N, 130.655�E), (c) deciduous forest (48.358�N, 134.359�E), (d) evergreen forest (43.886�N, 125.293�E), (e) saline-
alkaline land (45.856�N, 124.724�E), (f) natural wetland (47.210�N, 124.458�E), (g) build-up (43.886�N, 125.293�E), and (h) water (45.236�N, 124.297�E) in 2010. The hollow
triangular and round symbols mean the cloud and cloud shadow from the MODIS quality layer and blue band >= 0.2, respectively, which are labeled on the LSWI curves.
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Our previous studies presented a phenology-based algorithm to
identify and map paddy rice in southern China and Southeast Asia
(Xiao et al., 2006, 2005). The algorithm captures the characteristics
of flooding signals and rapid plant growth from the period of flood-
ing/transplanting to the period with a full canopy. When the paddy
rice fields are flooded and transplanted, there is a temporary inver-
sion of the vegetation indices in which the LSWI values either
approach or exceed the NDVI or EVI values (Fig. 2b); this can be
characterized as the flooding/transplanting signal in paddy rice
fields (Xiao et al., 2002b). For the 500-m spatial resolution
MODIS images, we slightly relaxed the threshold and used a confi-
dence interval of 5% to identify a flooded/transplanted pixel:
LSWI + 0.05P EVI or LSWI + 0.05P NDVI (Xiao et al., 2006,
2005). The flooding and transplanting areas in each 8-day compos-
ite in one year were identified as potential areas for paddy rice
fields. Second, our previous studies also showed that rice crops
grow rapidly after transplanting, and the LAI usually reaches its
peak in approximately two months in southern China and
Southeast Asia (Xiao et al., 2006, 2005, 2002c). The EVI value of a
rice pixel reaches half of the maximum EVI value (in that crop
cycle) within five 8-day increments (approximately 40 d) after
transplanting.

In observations with snow cover (winter season) and/or snow-
melt (early spring season), the LSWI values are often higher than
the EVI values (Fig. 2b), which affect the algorithm described above
(Fig. S1). Here, we propose an improved mapping procedure that
consists of two steps: (1) use land surface temperature to define
a suitable period of flooding and rice transplanting in a year for
individual pixels, and (2) use vegetation indices to identify the sig-
nal of flooding and transplanting within the suitable period of
flooding and rice transplanting.

Rice plant transplanting occurs when a stable temperature
threshold is reached, so the plants will not suffer damage from cold
temperatures. By comparing the observational agricultural phenol-
ogy data and the temporal profile of nighttime LST (Fig. 2), we
determined that the likely starting date of flooding and transplant-
ing (SOF) is when the nighttime LST remains above 5 �C (LST 5 �C
for short). Because snowmelt occurs after the nighttime LST is
above 0 �C, no snow cover will exist after the nighttime
LST > 5 �C. Moreover, we found that the flood/open-canopy signals
of paddy rice fields mainly occur before the dates that the LSWI
and EVI curves cross (Figs. 2 and 3), where the EVI value is equal

to approximately 0.35 (EVI 0.35 for short) during the early part
of the growing season of paddy rice. The period of EVI 0.35 corre-
sponds to the end of the flood (EOF) and the open canopy stage in
the rice fields. Therefore, we set the EVI 0.35 point as the EOF.

We then used the EVI and LSWI data within the suitable period
for flooding and transplanting to identify the observations with
signals of flooding and transplanting (Eq. (1)) and assumed a pixel
to be a ‘‘potential or likely’’ paddy rice field if one or more observa-
tions were identified in that manner (Eq. (2), Fig. 5).

FTi ¼
1 ðLSWITi þ 0:05 P EVITiÞ
0 ðLSWITi þ 0:05 < EVITiÞ

�
ð1Þ

where Ti is the 8-day composite period between the SOF and EOF.

Ricep ¼
X

ðFT1; FT2;���;FTn Þ ðSOF 6 T 6 EOFÞ ð2Þ

where Ricep is the potential paddy rice area, and FT is the flooding
area in the 8-day composite at T between the SOF and EOF.

2.4. Regional implementation of the paddy rice mapping algorithm

It is challenging to implement our algorithm to map paddy rice
fields at a regional scale because several factors (e.g., snow cover,
water bodies, and other vegetated land-cover types) may cause
classification error of commission. In our previous studies, several
algorithms were used to generate various masks (snow, permanent
water, evergreen vegetation) at regional scales, which reduce the
commission error in detecting paddy rice fields (Xiao et al., 2006,
2005). In this study, we added four new masks to improve the
accuracy of the MODIS-based paddy rice mapping: (1) mixed pixels
with water and natural vegetation, (2) sparse vegetation, (3) natu-
ral deciduous vegetation, and (4) natural wetlands (Fig. 6).

2.4.1. Snow cover
We used the algorithm developed for the MODIS snow product

to generate snow cover masks, which is based on the NDSI and NIR
bands (Hall et al., 1995, 2002). The pixels with the thresholds
NDSI > 0.40 and NIR > 0.11 were labeled as snow cover in this
study. Forty-six maps of snow cover were generated. The observa-
tions that were identified as snow cover were excluded from the
identification of paddy rice fields.

Fig. 4. Spatial distributions of the starting dates of nighttime land surface temperature (LST) remaining stable above (a) 0 �C, (b) 5 �C, and (c) 10 �C in northeastern China
based on MODIS LST data in 2010.
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2.4.2. Persistent water bodies
We analyzed the seasonal NDVI and LSWI profiles of water bod-

ies for the year, and an observation was assumed to be a water
body if NDVI < 0.1 and LSWI > NDVI. For each pixel, we counted
the number of 8-day periods identified as a water body in the year
(46 images). Pixels were identified as a persistent water body if it
was labeled as a water body in ten or more 8-day composite peri-
ods during the year (Fig. 3h). The resultant mask of persistent
water bodies is shown in Fig. 7a. The pixels identified as persistent
water bodies were excluded in the identification of paddy rice
fields.

2.4.3. Mixed pixels with natural vegetation and water bodies (edge
pixels of rivers and lakes)

Many mixed pixels of natural vegetation (grass, shrub or trees)
and water are located near rivers, lakes, and saline and alkaline

areas. These mixed pixels often have higher LSWI values than EVI
values throughout the plant growing season. During the rainy sea-
son in the summer (Fig. 2a), precipitation enhances the flooding
signal for these pixels, while paddy rice fields have high vegetation
coverage and no flooding signals. Therefore, the flooding areas in
the summer can be used to extract the mixed vegetation/water
pixels. We generated the flooding maps using the 26–30th
MODIS 8-day composites (i.e., from 20 July to 21 August) using
the formula LSWI + 0.05P EVI and then merged them into one
mask of mixed vegetation and water pixels (Fig. 7b).

2.4.4. Evergreen vegetation
Croplands and other deciduous vegetation usually had negative

LSWI values in several 8-day periods due to exposed soils and/or
senescent vegetation, but evergreen vegetation types (with green
vegetation throughout the year) always had positive LSWI values

Fig. 5. Spatial distribution of flooding/transplanting pixels in northeastern China in 2010, based on (a) flooded/transplanted pixels during the period from the starting date of
LST 5 �C to the date of EVI = 0.35, and (b) flooded/transplanted pixels during the period from May to June (from 16th to 23rd 8-day MODIS composites).

MODIS 8-day composites of surface reflectance product (MOD09A1)

Cloud 
mask

Snow 
mask

Permanent 
water mask

Mixed pixels 
with water and 

vegetation

Evergreen 
vegetation mask

NDVI,      EVI,      LSWINDSI

Initial map of 
paddy rice

Sparse 
vegetation mask

Maps of flooding and rice transplanting (46 maps/yr)

NLCD-based natural 
wetland mask

Final map of paddy rice field

Natural 
deciduous 
vegetation

Flooding 
timing

LSTSOF

EOF EVI

Fig. 6. A schematic diagram illustrating the algorithms for large scale mapping of flooding and paddy rice fields from MODIS 8-day surface reflectance images at 500-m
spatial resolution and MODIS 8-day land surface temperature data at 1-km spatial resolution. One year of 8-day MODIS surface reflectance data (a total of forty-six 8-day
composites) and thermal data (a total of forty-six 8-day composites) are used as input data.
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(LSWI > 0) (Fig. 3d). Here, we considered the pixels with no LSWI
values of <0 in a year to be evergreen vegetation pixels (Xiao
et al., 2005, 2009). One mask of evergreen vegetation was gener-
ated for each MODIS tile (Fig. 7c), and those pixels were excluded
from the identification of flooding and paddy rice fields.

2.4.5. Sparse vegetation (saline and alkaline land)
Extensive areas of saline and alkaline land are distributed in the

western part of the study area (Fig. S2b). We identified and
mapped sparse vegetation using the annual maximum EVI data.
The maximum EVI value of paddy rice is greater than 0.6
(Fig. 3a), while that of the sparse vegetation is less than 0.5
(Fig. 3e). We generated a map of sparse vegetation for the pixels
with maximum EVI values of 60.5 (Fig. 7d). There is good spatial
consistency between the NLCD-based saline and alkaline land
and the pixels with maximum EVI values of less than 0.5 (Fig. S2).

2.4.6. Natural deciduous vegetation
Natural deciduous vegetation (deciduous forests, shrub, grass-

lands) start to become green after the nighttime LST reaches 0 �C
and can have high NDVI values (>0.4) by the time the nighttime
LST reaches 10 �C. In comparison, when the LST first reaches

10 �C, the paddy rice canopy is still low (NDVI < 0.4) and exhibits
flooding signals (Fig. 2b). We generated a natural deciduous vege-
tation mask using NDVI > 0.4 for the period between LST > 0 �C and
LST 6 10 �C after excluding the masks described above (Fig. 7e).
Those pixels identified as natural deciduous vegetation were not
included in the identification of flooding and paddy rice fields.

2.4.7. NLCD-based natural wetlands
The study area contains several large natural wetlands, such as

the Zhalong natural wetland in western Heilongjiang Province, the
Honghe natural wetland in northeastern Heilongjiang Province,
and the Panjin natural wetland in southern Liaoning Province
(Fig. 7f). Natural wetlands tend to growmore rapidly and flood ear-
lier than paddy rice fields due to the spring snowmelt and
increased river flow (Fig. 3f and S3). While most natural wetlands
are included in the natural deciduous vegetation mask described in
Section 2.4.6, we found that in some areas (such as Zhalong), nat-
ural wetlands and paddy rice have similar growth characteristics
with similar flooding and canopy closure time periods (Fig. S3a).
These kinds of wetlands are difficult to distinguish from paddy rice.
To develop a more accurate paddy rice map, we used the natural

Fig. 7. Spatial distribution of (a) permanent water, (b) mixed pixels with vegetation and water bodies, (c) evergreen vegetation, (d) sparse vegetation, (e) natural deciduous
vegetation with quick growth around the period of the starting date of nighttime LST remaining stable above 10 �C and NDVI > 0.4, and (f) NLCD-based natural wetland with a
fraction of >= 80% in each pixel in northeastern China in 2010.
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wetland map derived from the NLCD dataset in 2010 as a mask to
exclude natural wetlands.

2.5. Validation of the MODIS-based paddy rice map using VHRI data

The accuracy of the MODIS-based paddy rice map was evalu-
ated using validation data extracted from Google Earth Very High
Resolution Imagery (VHRI). The VHRI data around 2010 were avail-
able in the Google Earth historical imagery database despite the
incomplete coverage in the study area. For the samples without
available VHRI, we used Landsat TM/ETM+ images as reference
data. The stratified random sampling method was used to design
the locations of the validation samples and we used NLCD land
cover information as geographic stratification for the generation
of the random samples of different land cover types. Based on
the sampling points, we digitized the areas of interest (AOIs) as
polygons in Google Earth by referring the VHRI, and each AOI is lar-
ger than one MODIS pixel (500 m � 500 m). We also collected
more than 10,000 field photos in the study area through an inten-
sive field survey in the summer of 2013, and all the photos were
managed in the Global Geo-Referenced Field Photo Library
(http://www.eomf.ou.edu/photos/, see Fig. S4 for the locations of
the photos). We used selected photos for the interpretation of
the VHRI and the validation data collection as they can show the
crop and land use types (Dong et al., 2013, 2012). For example,
paddy rice fields can be identified due to its relatively smaller field
sizes and regular rectangle shapes (Fig. S5). Finally we generated
299 AOIs (2143 pixels) for paddy rice and 515 AOIs (7685 pixels)
for non-paddy rice, including 96 upland crop AOIs (514 pixels),
99 forest AOIs (656 pixels), 101 built-up land AOIs (2530 pixels),
100 water body AOIs (2959 pixels), and 119 wetland AOIs (1026
pixels). The spatial distribution of the derived AOIs is shown in
Fig. S5 of SI. The producer and user accuracy of paddy rice, as well
as the commission and omission errors, were calculated to quan-
tify the accuracy of the paddy rice map.

2.6. Comparison with the paddy rice data from the 2010 NLCD dataset

The NLCD dataset for China was generated by the Chinese
Academy of Sciences through analyses of Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper (ETM+) images
acquired over five periods (1980s, 1995, 2000, 2005, and 2010)
for China (Liu et al., 2014, 2005). A classification system of six pri-
mary land cover categories and 25 subtypes was used in the NLCD
project, including ‘‘paddy cropland’’ (paddy rice) and ‘‘dry crop-
land’’ (upland crops) categories. The images were geo-referenced
and orthorectified with ground control points and
high-resolution digital elevation models. Visual interpretation
and digitization were conducted to generate the thematic maps
of land cover in China at a scale of 1:100,000. The resultant vector
dataset was converted into a gridded raster at a 1-km spatial reso-
lution, which includes area information for each land cover cate-
gory. The original vector datasets are not open to the public but
the 1-km gridded raster datasets are freely available through off-
line application. The 1-km resolution gridded ‘‘paddy rice’’ layer
of the 2010 NLCD dataset was used to compare with the
MODIS-based rice maps. According to the 2010 NLCD dataset, there
was a total area of 4.6 � 104 km2 of paddy rice and 25.3 � 104 km2

of upland crops in the three provinces, which accounted for 6% and
32%, respectively, of the total land area in the study region
(Table 1).

The scale issue needs to be considered when comparing a
500-m spatial resolution binary (0 or 1 binary set) paddy rice
map derived from MODIS data (MODrice) to a fractional-area data-
set derived from NLCD with a 1-km spatial resolution. In our pre-
vious study, we chose an appropriate threshold of percentage

fractional cover of the reference dataset for the comparisons
because the moderate resolution product could not detect pixels
with small percentages of paddy rice fields (Xiao et al., 2005).
The cumulative frequency distribution of the paddy rice fields
based on the 2010 1-km NLCD dataset by province (Fig. 8) shows
that some regions have small and fragmented paddy rice fields.
The medians (50% of the pixels) for the fractions of paddy rice
fields within 1-km pixels were 24% in Jilin Province and 42% in
Heilongjiang Province (Table 1), which indicated that the paddy
rice fields in Jilin Province were more fragmented, such as in the
mountainous regions with low percentage fractions in each pixel
in the south part of the province (Fig. 9a). Therefore, it is important
to set a suitable threshold for the fractional coverage of
NLCD-based paddy rice to evaluate the MODIS-based paddy rice
map.

The definition of the minimal fractional coverage depends on
the pixel size of both the NLCD-2010 and MODrice. The MODIS pixel
in the MOD09A1 product has a spatial resolution of 463 m � 463 m
and an area of 214,369 m2, which accounts for 21% the area of a
1 km pixel (1,000,000 m2) in the NLCD-2010 dataset. Thus, the pix-
els with a fractional coverage ofP20% are designated as paddy rice
pixels, and a binary map of paddy rice fields is generated (hereafter
NLCD20). The total area of paddy rice from all of the paddy rice pix-
els (NLCD20) by calculating fractional area is approximately
43,276 km2, which is approximately 93% of the total paddy rice
area in the three provinces in northeastern China (46,471 km2;
Table 1).

We compared the MODrice map with the NLCD paddy rice layer
at (1) the pixel level and (2) the administrative unit level. The
paddy rice areas were calculated by using two approaches: (1)
the pixel number-based paddy rice area based on MODrice and
NLCD20 which assumed that both MODIS-based paddy rice pixels
and NLCD20 paddy rice pixels have 100% fractional cover of paddy
rice within the individual pixels, and (2) the fractional area-based
paddy rice area based on the MODrice pixels and NLCD pixels in
which rice fraction areas larger than 20%.

2.7. Comparison with the 2010 agricultural census data

The agricultural census data, which were derived from the 2010
statistical yearbooks of Heilongjiang, Jilin and Liaoning Provinces
(Heilongjiang, 2011; Jilin, 2011; Liaoning, 2011), were used to
compare and evaluate the MODIS-derived paddy rice maps at the
prefectural level. Paddy rice planting area data are available at
the province and sub-province levels in the yearbooks. There are
two levels of administrative units (prefectures and counties), and
the prefectures administratively oversee the counties. In
Heilongjiang and Liaoning Provinces, only prefectural level data

Fig. 8. Histograms of paddy rice fields within 1-km NLCD-2010 pixels by provinces
in northeastern China. The cumulated frequency is used in the graph.
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were available, while county level data were available for Jilin pro-
vince. There were 36 prefectures in the region (including 13 in
Heilongjiang Province, 9 in Jilin Province, and 14 in Liaoning
Province).

3. Results

3.1. Paddy rice map of northeastern China from MODIS data in 2010

The spatial distribution of MODIS-derived paddy rice fields in
northeastern China in 2010 (MODrice) is shown in Fig. 9b. Paddy
rice fields were distributed throughout the three provinces, and
Heilongjiang Province had the largest area of paddy rice fields.
The paddy rice fields were mainly concentrated in two major allu-
vial plains (the Sanjiang Plain in Heilongjiang Province and Liaohe
Plain in Liaoning Province), and extensive paddy rice fields were
also located along rivers, such as the Songhua River, Liao River,
and Wusuli River. Most paddy rice fields were distributed in
regions with elevations of less than 200 m asl with the exception
of the mountainous region in the south of Jilin Province. The
MODIS-derived paddy rice estimate was 39,239 km2 in northeast-
ern China (Table 3).

3.2. Evaluation of the MODrice map from ground truth data

The MODIS-based rice map was validated based on ground
truth data, and the confusionmatrix is shown in Table 2. The paddy
rice map had a high producer accuracy (92%) and user accuracy
(96%), while the omission and commission errors were 8% and
4%, respectively. The overall accuracy was 97%, and the Kappa coef-
ficient was 0.92. The results indicate that the MODIS-derived
paddy rice map of our study area has a high accuracy.

3.3. Comparison between the MODrice map and the NLCD-based rice
layer

At the pixel level, the spatial pattern of paddy rice fields from
MODrice was consistent with that of the NLCD-based paddy rice
data layer, particularly for the pixels with area percentages
P40% (Fig. 9). According to the pixel number-based comparison

of paddy rice area, the common paddy rice area of MODrice and
NLCD20 accounted for 72% of the MODrice area and 58% of the
NLCD20 area, respectively (Table 3). However, there were several
notable differences between the MODrice map and the NLCD20

map. First, MODrice identified more paddy rice fields than the
NLCD-2010 product in the Sanjiang Plain in northeast
Heilongjiang Province. Our MODrice result was verified to be correct
using the Google Earth high resolution images of those regions.
Second, the paddy rice planting area identified by MODrice was
generally smaller than that of the NLCD dataset in the entire study
area (Table 3). The inconsistencies between MODrice and NLCD20

were concentrated in the mountainous regions, especially in Jilin

Fig. 9. Spatial distribution of paddy rice fields in northeastern China, as derived from (a) the NLCD-2010 database (Liu et al., 2014), and (b) the analysis of MODIS 8-day
surface reflectance data and land surface temperature data in 2010.

Table 2
Confusion matrix of the paddy rice map accuracy assessment using areas of interest
(AOIs) from the high-resolution images from 2010 in Google Earth.

Class Ground truth pixels Total User accuracy

Paddy rice Non-paddy rice

Paddy rice 1977 93 2070 96%
Non-paddy rice 165 7496 7661 98%
Total 2142 7589 9731
Producer accuracy 92% 99%

Note: overall accuracy = 97%; Kappa coefficient = 0.92.

Table 3
Provincial-level comparison of area estimates of the paddy rice fields (km2) from
MODIS data in 2010 and the National Land Cover Dataset (NLCD) in 2010 (Liu et al.,
2014). Two types of statistics were included: the pixel number-based area and the
fractional area-based area.

Province Pixel number-based comparison of
paddy rice area (km2) assuming a 100%
fraction

Fractional area-
based comparison
of paddy rice area
(km2)

MODrice NLCD20 Both MODrice and
NLCD20

MODrice NLCD20

Heilongjiang 41,703 39,663 27,943 28,637 25,317
Jilin 7915 17,262 6154 5068 9403
Liaoning 8040 14179 7130 5534 8556
Total 57,658 71,104 41,227 39,239 43,276
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Province (Fig. 9), where many pixels in the NLCD-based dataset
had a fractional coverage of 640% paddy rice. The MODrice may
underestimate rice fields in this region because the moderate spa-
tial resolution MODIS data cannot detect small paddy rice fields.
According to the fractional area-based comparison of paddy rice
area, NLCD-based results also had a higher estimate than that of
MODrice (Table 3).

At the administrative level, two comparisons between the
MODrice and NLCD20 rice maps were conducted at the prefectural
and county levels (36 prefectures and 182 counties, Fig. 10). The
total areas of paddy rice fields of different administrative regions
were calculated by overlaying administrative boundaries with
the paddy rice maps.

First, we used the pixel number approach to calculate the total
paddy rice area of each county and prefecture. The total area esti-
mates of paddy rice from MODrice and NLCD20 were significantly
(P < 0.001) correlated (Fig. 10a and c) with a coefficient of determi-
nation (R2) = 0.87 and a root mean square error (RMSE) = 1053 km2

at the prefectural level (n = 36) and R2 = 0.84 and RMSE = 268 km2

at the county level (n = 182). Second, we used the fractional area
approach to calculate the total paddy rice area within each county

and prefecture. The fractional area-based comparison had stronger
linear relationships in the area estimates of paddy rice between
MODrice and NLCD20 (Fig. 10b and d), with R2 = 0.90 and
RMSE = 393 km2 at the prefectural level (n = 36) and R2 = 0.88
and RMSE = 101 km2 at the county level (n = 182). Based on the
strong relationship between the two datasets at the prefectural
and county levels, our MODIS-based algorithm performed well rel-
ative to the higher resolution Landsat-based results. Given the high
temporal resolution, the MODIS-based algorithm could help pro-
vide timely annual rice area estimates.

3.4. Comparison with agricultural statistical data

We compared the MODIS-based paddy rice products with the
statistical data at the prefectural level (Fig. 11). The R2 between
the MODIS-based data and the statistical data was 0.50; and the
correlation was significant at the level of p < 0.001 (n = 36). The
RMSE between them was 1444 km2. Compared with level of the
consistency between the MODIS-derived results and the NLCD data
(Fig. 10), the MODIS-derived data exhibits low consistency with
the agricultural census data.

MODrice = 1.07 × NLCDrice
R² = 0.90, n = 36 
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comparison (assuming 100 % fraction) 

Fig. 10. The pixel number-based comparisons of paddy rice areas in northeastern China between the MODIS-based results (MODrice) and NLCD dataset (NLCD20) at (a) the
prefectural level and (c) county level; The fractional area-based comparisons of paddy rice areas in northeastern China between the MODrice and NLCD20 at (b) the prefectural
level and (d) county level. The pixel number-based comparison approach assumed that all MODrice pixels and the NLCD20 paddy rice pixels have 100% fractional cover of
paddy rice, while the fractional area-based paddy rice area based on the MODrice pixels and NLCD pixels in which rice fraction areas larger than 20%.
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4. Discussion

4.1. Improvement of phenology-based paddy rice algorithms

In this study, we improved the phenology-based approach for
identifying paddy rice fields and applied it to generate a paddy rice
map of northeastern China in 2010, where paddy rice mapping can
be influenced by snowmelt in the spring. This study is an extension
and improvement of our previous studies in Southeast Asia and
south China (Xiao et al., 2006, 2005). The key aspect of the
improved paddy rice mapping algorithm is to detect the flooding
signal of paddy rice fields during suitable period for flooding and
transplanting, which has not been defined clearly in previous
phenology-based paddy rice mapping efforts (Peng, 2009; Peng

et al., 2011; Shi et al., 2013; Sun et al., 2009; Xiao et al., 2006,
2005). This study has improvements in three areas compared to
the previous studies (Table 4).

First, we improved the phenology-based algorithm by explicitly
defining the suitable period for flooding and rice transplanting. In
our previous studies in southern China and South and
Southeastern Asia, the flooded pixels for one year were defined
first and then merged as potential paddy rice fields (Xiao et al.,
2006, 2005). Shi et al. (2013) and Peng et al. (2011) attempted to
narrow the flooding and transplanting period and selected certain
8-day composites based on agricultural phenology observation
data in northeast China and Hunan province in China, respectively.
All of the pixels in those composites were considered to have the
same period of flooding. For example, Shi et al. (2013) merged
the flooded pixels during May and June (from approximately the
16th to 23rd 8-day MODIS composites) as the potential paddy rice
regions in northeastern China based on the phenology observation
data (Fig. 2c and d). The result of this method is shown in Fig. 5b,
which is similar to our flooding map (Fig. 5a) but includes more
disturbances from forests and other natural vegetation. Sun et al.
(2009) also generated a spatial dataset of flooding and transplant-
ing periods in China by spatial interpolation of the agricultural
phenology observation data. However, the agricultural phenology
observation data were limited and scattered and had bias in being
used to acquire wall-to-wall phenology information. In this study,
we used the spatial LST data to define the start of the flooding
(SOF) of the paddy rice fields; specifically, the date after which
the nighttime LST remained above 5 �C was determined to be the
SOF. We also found that EVI 0.35 can be an effective indicator of
the end of flooding (EOF) based on time series analysis
(Figs. 2b and 3a). The suitable period for flooding and transplanting
(SOF and EOF) were extracted for individual pixels. The flooding
and transplanting region that was identified between SOF and
EOF (Fig. 5a) closely matches the resultant paddy rice map in
Fig. 9b.

Second, we simplified the flooding signal extraction process by
using two indices (EVI and LSWI) instead of three (NDVI, EVI, and
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Fig. 11. Prefectural-level area comparison of paddy rice fields in northeastern China
between MODrice data and statistical data.

Table 4
Comparison of the existing phenology-based paddy rice mapping algorithms.

Reference Rules in phenology-based algorithms Study area

Xiao et al. (2006, 2005) (1) Flooding and transplanting identification: LSWI + 0.05 >= EVI or LSWI + 0.05 >=
NDVI

South Asia, Southeast Asia,
and southern China

(2) Flooding and transplanting timing: all 8-day composites in one year
(3) Quick growth rule: the EVI value reaches half of the maximum EVI value (in that
crop cycle) within five 8-day composites following the date of flooding and
transplanting

Sun et al. (2009) (1) Flooding and transplanting identification: LSWI > 0.12, EVI < 0.26, and
LSWI + 0.05 > EVI for single and early rice identification; LSWI > 0.12, EVI > 0.35, and
LSWI + 0.17 > EVI for late rice identification

China

(2) Flooding and transplanting timing: flooding and transplanting period according
to agricultural observations
(3) Quick growth rule: the average EVI of the 6th to 11th 8-day composites after
transplanting was greater than 0.35

Shi et al. (2013) (1) Flooding and transplanting identification: LSWI2105 > 2EVI Northeastern China
(2) Flooding and transplanting timing: from May to June according to agricultural
observations
(3) Quick growth rule: the mean EVI of the 7th to 11th 8-day composites is greater
than or equal to 0.45

Peng (2009), Peng et al. (2011) (1) Flooding and transplanting identification: LSWI + T > EVI for single, early and late
rice identification, and the threshold T is different for different rice types in different
years

Hunan Province in China

(2) Flooding and transplanting timing: according to agricultural observations
(3) Quick growth rule: the EVI value during rice heading period reaches 0.55

This study (1) Flooding and transplanting identification: LSWI + 0.05 >= EVI Northeastern China
(2) Flooding and transplanting timing: between the date of LST 5 �C (SOF) and EVI
0.35 (EOF)
(3) Quick growth rule: none
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LSWI). Our previous studies (Xiao et al., 2006, 2005) mathemati-
cally defined flooding as LSWI + 0.05P EVI or LSWI + 0.0
5P NDVI. Sun et al. (2009) used the condition LSWI + 0.05 > EVI
and two additional conditions (LSWI > 0.12 and EVI < 0.26 during
the flooding and transplanting period) to identify the ‘‘inundation
signals’’ of the single and early rice in China. Peng (2009) and
Peng et al. (2011) used a similar condition (LSWI + T > EVI) to
detect paddy rice fields in Hunan Province, China, where T is the
threshold, which has different values for different years and paddy
rice types (single, early and late rice). These previous studies fol-
lowed a similar principle as our previous studies (Xiao et al.,
2006, 2005) but added more specific conditions that helped to
exclude the other land cover types; however, the method is not
robust and practical for large scale and long term applications. In
this study, we simplified the flooding extraction equation and
improved the mapping process by using more masks (i.e., persis-
tent water, evergreen vegetation, mixed pixels with water and
vegetation).

Third, the rapid growth rule was not considered in this study to
further simplify the algorithm for identifying paddy rice planting
areas. Rapid growth and canopy closure is an important stage that
follows the flooding and transplanting of rice and can be a useful
feature to extract paddy rice. Our previous studies (Xiao et al.,
2006, 2005) showed that the EVI value of a rice pixel reaches half
of the maximum EVI value (in that crop cycle) within five 8-day
increments (approximately 40 d) after transplanting. Sun et al.
(2009) assumed that the average EVI value of the 6th to 11th
8-day composites after transplanting was greater than 0.35 for a
rice pixel. Shi et al. (2013) assumed that the mean EVI value of
the 7th to 11th 8-d composites is greater than or equal to 0.45,
and Peng (2009) and Peng et al. (2011) assumed that the EVI value
reaches 0.55 during the rice heading period. These studies applied
different thresholds for different stages around the rapid growth
stage; thus, the approach is difficult to extend to a larger scale.
The temporal profile analysis in Fig. 3 shows that a threshold in
the rapid growth stage may have a limited effect because forests
and natural wetlands can meet the requirement as well. Flooding
and transplanting is the most unique characteristic of paddy rice.
Fig. 5a shows that the flooding and transplanting area between
SOF and EOF is similar to the final paddy rice map with only lim-
ited commission errors from natural wetlands, dryland crops, and
forests, which also meet the conditions of the rapid growth stage.
We argue that the identification of the flooding and transplanting
signals in the early phases of the paddy rice calendar are sufficient
to extract the paddy rice planting area given that multiple masks
are used in this study.

4.2. Comparison between the MODIS- and phenology-based approach
and landsat- and visual interpretation approach

Although the spatial distribution of paddy rice from MODrice

agrees well with the spatial pattern from NLCD20, there are several
regional differences, especially in Jilin and Liaoning Provinces. The
reasons for the discrepancies between the MODrice and NLCD20

area estimates are complex.
First, due to the moderate resolution of the MODIS data (500 m),

our algorithm could not identify paddy rice fields in the regions
where the areas of paddy rice fields are much smaller than a
MODIS pixel; this was also mentioned in previous studies (Peng
et al., 2011; Shi et al., 2013; Sun et al., 2009; Xiao et al., 2006,
2005). For example, paddy rice fields in the southern part of Jilin
Province were mainly distributed in the mountainous regions
according to the NLCD dataset, and area percentages of paddy rice
were less than 40% in the 1-km pixels. It is difficult for MODIS data

to identify paddy rice fields in fragmented mountainous areas,
which could have led to underestimations of MODIS-based paddy
rice fields. Several challenges arise when assessing the accuracy
of moderate-resolution (500 m) land cover products, as the
MODIS-based maps can overestimate or underestimate area of
individual land cover types due to the fragmentation and
sub-pixel proportions of the individual land cover types.
Alternative strategies include temporal mixture analysis (Yang
et al., 2012) and the hierarchical training technique (Jain et al.,
2013).

Second, there are several uncertainties in the NLCD dataset. The
NLCD products were generated by using one Landsat image during
the growing season instead of multi-temporal images. The image
used substantially affects visual interpretation capability because
the paddy rice and other crops (wheat, corn) have similar spectral
signatures at the peak of the growing season. For example, several
paddy rice fields were identified from NLCD data in the area of
Dunhua city in Jilin Province, but only a few were identified from
the MODIS data. We randomly extracted four samples from the
NLCD-based paddy rice region in this area and plotted the curves
of the MODIS vegetation indices from 2008 to 2012 (Fig. S6). We
found that there were no flooding/transplanting signals in those
samples during this period, which indicated that the sample
regions were not paddy rice fields. Additionally, we compared
the area of paddy rice fields in Dunhua from the NLCD dataset in
2010 with data from the 2010 statistical yearbook of Jilin
Province (Jilin, 2011). The areas of paddy rice fields in Dunhua
were 352 km2 from the NLCD dataset but only 52 km2 from the sta-
tistical yearbook, which further indicates that there is some bias
toward NLCD-based paddy rice fields in Dunhua. Therefore, using
MODIS time series data to identify crops has several advantages
over visual interpretation of Landsat images in the NLCD dataset.

Third, paddy rice and some natural wetlands in the study area
have similar phenology characteristics (Fig. S3), thus, it is difficult
to distinguish paddy rice from natural wetlands using the
phenology-based approach. We excluded some natural wetlands
using NDVI > 0.4 during the period of LST over 10 �C. Shi et al.
(2013) identified natural wetlands and forests based on the rules
NDVI > 0.4 and NDVI-LSWI2105 > 0.05 over 15 8-day composites
during the year based on the long growing season of natural wet-
land and forest from mid-late April to mid-October. However,
some wetlands cannot be excluded because of the similar features
of paddy rice and natural wetlands in some regions, which could
lead to overestimating the area of paddy rice fields (Fig. S3). In this
situation, shape and size information can be useful for extracting
natural wetlands by visual interpretation. We masked those natu-
ral wetlands based on the NLCD dataset. However, there is still a
need to develop a MODIS-based natural wetland mask in the
future, which will help to develop a uniform MODIS-based paddy
rice mapping protocol.

When we compared MODrice with the statistical agricultural
data (Fig. 11), the consistency between them was significantly
lower than between MODrice and NLCDrice (Fig. 10b). The primary
reason can be attributed to the quality of the statistical data pro-
vided by China’s State Statistical Bureau (SSB). Statistical data in
China can be biased due to political and policy factors (Crook,
1993; Deng et al., 2006; Frolking et al., 1999; Liu et al., 2005;
Seto et al., 2000; Xiao et al., 2003a). Xiao et al. (2003a) showed that
the cropland area in China from official agricultural census was
underestimated by comparisons with different cropland areas
data. The SSB also reported that cultivated areas were underesti-
mated in China (State Statistical Bureau, 1994). The consistency
between NLCDrice and MODrice indicates the reliability of the
MODIS-based paddy rice map developed in this study.
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5. Conclusions

Many studies have reported on paddy rice distribution in sub-
tropical and tropical regions, but paddy rice in temperate and cold
temperate zones has received little attention. This study extended
our previous efforts in mapping paddy rice in southern China,
Southeastern Asia, and South Asia into northern monsoon Asia.
This is the first study to demonstrate the potential of MODIS LST
data and vegetation index data in mapping paddy rice planting
areas. We improved the phenology-based algorithm by accurately
defining the temporal window of flooding and transplanting based
on MODIS LST data. The resultant paddy/non-paddy rice map had
an overall accuracy of 97% and Kappa coefficient of 0.92 based on
the validation data derived from the Google Earth VHRI data and
the field photos. The results from this study also demonstrated that
our improved algorithm is simple and robust and can be used to
map paddy rice plant areas in other temperate and cold temperate
zones, including Japan and the Korean Peninsula. Together with
our previous efforts (Xiao et al., 2005, 2006), our long-term goal
is to use a consistent algorithm and MODIS data to develop a data-
base of paddy rice agriculture in monsoon Asia, which accounts for
90% of the global rice production. In addition, the area changes in
paddy rice can be quantified using multi-year MODIS data since
2000, which will enable us to study the effects of climate change
and human activities on the paddy rice planting area and the likely
impacts of the area changes of paddy rice on the agroecosystem,
biogeochemical cycles and food security.
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