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RESEARCH

The genetic resources conserved by ex situ genebanks 
around the world cover a vast range of genetic diversity 

underexploited in present day cultivars. The main objective of 
public genebanks is to conserve crop genetic diversity to sustain 
agricultural production systems by providing ready access to sam-
ples for research and plant breeding activities. A bottleneck for 
rational utilization is the availability and access to passport, char-
acterization, and evaluation data. Obtaining good quality phe-
notypic trait data for genebank accessions requires large fi eld or 
greenhouse experiments at great cost. The lack of evaluation data 
for useful traits is one of the major, current problems hindering 
the effi  cient use of plant genetic resources (FAO, 2010).

Further, the growing size of the genebank collections has 
been mentioned as a problem for the effi  cient use of genebank 
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ABSTRACT

Collections of crop genetic resources are a 

valuable source of new genetic variation for 

economically important traits, including resis-

tance to crop diseases. New sources of useful 

crop traits are often identifi ed through evalua-

tion in fi eld trials. The number of relevant acces-

sions in genebank collections available to be 

evaluated is often substantially larger than the 

capacity of the evaluation project. The focused 

identifi cation of germplasm strategy (FIGS) is an 

approach used to select subsets of germplasm 

from genetic resource collections in such a way 

as to maximize the likelihood of capturing a spe-

cifi c trait. This strategy uses a range of meth-

ods to link the expression of a specifi c trait (of 

a target crop) with the eco-geographic param-

eters of the original collection site. This study 

contributes to the development of the approach 

by which a FIGS subset could be assembled 

for biotic traits. We have evaluated trait-specifi c 

subset selection methods for two fungal crop 

diseases, namely stem rust (Puccinia graminis 

Pers.) in wheat (Triticum aestivum L. and Triti-

cum turgidum L.) and net blotch (Pyrenophora 

teres Drechs.) in barley (Hordeum vulgare L.). 

The results indicate that the climate layers from 

freely available eco-geographic databases are 

well suited to model and predict the reaction in 

these crops to biotic stress traits. This result has 

the potential to improve the effi ciency of fi eld 

screening trials to fi nd novel sources of eco-

nomically valuable crop traits.
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collections (see for example Mackay, 1990, 1995) because 
the number of genebank accessions available to be evalu-
ated for a specifi c trait is often substantially larger than 
the resources available to evaluate the material. Thus, 
fi nding the genebank accessions most likely to possess the 
desired trait can be compared to searching for a needle in 
a haystack. Clearly a rational and effi  cient strategy to mine 
genebanks for useful traits is required.

Focused Identifi cation 
of Germplasm Strategy
The challenges to using genetic resource collections, as 
detailed above, was one of the reasons for the introduction 
of the core collection concept (Frankel, 1984; van Hintum 
et al., 2000). A core collection seeks to represent most of the 
genetic variation present in the original collection in a core 
subset of 5 to 10% the size of the original. Core collection 
methods use statistical approaches to maximize diversity 
using a variety of input data including collection site descrip-
tors, agro-morphological traits, and molecular marker data.

However, the core collection approach may not lead to 
the identifi cation of rare useful traits in germplasm collec-
tions (Holbrook and Dong, 2005). Such concerns to cap-
ture rare traits and adaptive trait variation, much of which 
is thought to refl ect plant functional variation (Wright 
and Gaut, 2005), have lead some workers to construct 
specifi c or thematic collections or use of other approaches 
(Brown and Spillane, 1999; Gepts, 2006; Dwivedi et al., 
2007; Pessoa-Filho et al., 2010; Xu, 2010).

The focused identifi cation of germplasm strategy (FIGS) 
strategy introduces a novel approach for constructing small 
subsets of accessions in that it selects genetic variation for 
just a single trait at a time. The FIGS strategy endeavors to 
maximize the likelihood of encountering specifi c adaptive 
traits in subsets by choosing accessions from collection sites 
that are most likely to impose a selection pressure for the 
trait being sought (Mackay and Street, 2004).

Nikolai Ivanovich Vavilov (1887–1943) was one of 
the fi rst pioneers to recognize the importance of the eco-
climatic conditions when searching for source material to 
include in plant breeding (Vavilov, 1992a, b, 1957; Kurlov-
ich et al., 2000). Vavilov used the term “climatic analogy” 
for the selection of suitable strains guided by climate and 
soil data. His “diff erential phyto-geographical method” 
also has elements that link the morpho-physiological trait 
characters of species and strains to a defi nite environment 
and area (Vavilov, 1920, 1922, 1992c).

“It is evident that when selecting species and strains 
for the U.S.S.R. it is necessary to take the climate 
and the soil conditions at their origin into consid-
eration to introduce strains from areas that are more 
or less similar to those in our own country. Knowl-
edge of the climate of our own country and that of 
the areas from where we collected the seeds is of 

great importance.” (Vavilov, 1992b; see also Vavilov, 
1992a:266).

This link between environment and phenotype was 
recently demonstrated by Endresen (2010), who success-
fully used the FIGS strategy to link morphological traits 
in barley (Hordeum vulgare L.) to the eco-climatic pattern 
from the original collecting sites for Nordic barley land-
races. Put into practice, a simple example of applying the 
FIGS approach to selection of germplasm from a gene-
bank could be if salinity tolerance is the target trait then 
accessions would be chosen from collection sites that have 
saline soils (Peeters et al., 1990). Hijmans et al. (2003) 
explored, based on a similar hypothesis, the link between 
frost tolerance and eco-climate with focus on temperature 
at the original collecting site for genebank accessions.

However, the problem becomes more complex if 
one is looking for tolerances to biotic constraints. The 
approach used by El Bouhssini et al. (2009) to identify 
bread wheat (Triticum aestivum L.) and durum wheat (Triti-
cum turgidum L.) resistance to Sunn pest (Eurygaster integri-
ceps Puton) and to the virulent Syrian Russian wheat aphid 
biotype (Diuraphis noxia Kurdjumov) (El Bouhssini et al., 
2010) was to select accessions from agro-climatic environ-
ments that are likely to favor high pest populations dur-
ing the growing season. Thousands of accessions from the 
ICARDA genebank had previously been chosen, largely 
at random, and screened for the two pests without success 
(El Bouhssini, personal communication, 2008). By con-
trast, the FIGS approach chose relatively small subsets (500 
accessions) that contained multiple sources of resistance.

The fi rst step when using the FIGS approach is to 
identify a group of geo-referenced landraces with known 
resistance to a given pest or disease. An eco-geographic 
profi le of the collection sites of this “training set” is 
ascertained and statistical methods or models developed 
to select untested accessions from environments that are 
statistically similar to the trainer set environments. This 
was the approach successfully used by Bhullar et al. (2009, 
2010) to identify a range of bread wheat accessions with 
resistance to various powdery mildew [Blumeria graminis 
(DC.) E.O. Speer f. sp. tritici Em. Marchal] isolates.

The above examples demonstrate the utility of FIGS as a 
means to choose germplasm with variation for specifi c adap-
tive traits. However, they cannot be used as a proof of concept 
because the frequencies of the resistant material in the collec-
tion from which the subset was chosen were not known. Fur-
ther, the possibility exists that the resistant material occurred 
in the sets merely by chance. The aim of this present study was 
to use geospatial statistical analysis to predict the presence of 
resistance to stem rust (Puccinia graminis Pers.) in bread wheat 
and net blotch (Pyrenophora teres Drechs.) in barley in a set of 
landrace accessions that have been previously screened for the 
diseases, thus allowing an evaluation of the approach by com-
paring the predictions to a random selection.
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MATERIALS AND METHODS
This study used the results of disease screenings for landrace 

accessions maintained by the USDA National Plant Germplasm 

System (NPGS) Germplasm Resources Information Network 

(GRIN) (USDA-ARS, 2010a). Only those accessions with 

geo-referenced collection sites were used in the study. Agro-

climatic data, obtained from ICARDA (De Pauw, 2008) and 

WorldClim (Hijmans et al., 2005a; WorldClim, 2010), describ-

ing the collection sites were used to develop models to predict 

the presence of resistant phenotypes.

The Stem Rust Trait Dataset
The stem rust data is available online from the USDA NPGS 

GRIN database (USDA-ARS, 2010c). Bonman et al. (2007) 

described the experimental design for the fi eld trials. Sus-

ceptibility to stem rust (Puccinia graminis Pers. f.sp. tritici) was 

measured for six diff erent years (during 1988–1994) at the agri-

cultural research stations at St Paul (44°59′17″ N, 93°10′48″ W) 

and Rosemount (44°43′01″ N, 93°05′56″ W) located in Min-

nesota in the northern United States. Dr. Don V. McVey made 

all of the trait observations for both locations. The trial experi-

ments at Rosemont were inoculated by race TNMK. The trial 

experiments at St Paul were inoculated by race QFBS, RKQS, 

and RTQQ. The trials at St Paul in 1988 and 1989 were also 

inoculated by race QSHS and RHRS, since 1991 also by race 

HNLQ, and since 1992 also inoculated by race TNMK. The 

dataset contains observations for bread wheat (Triticum aestivum 

L.) and durum wheat (Triticum turgidum L.) and a total of 10 dif-

ferent subspecies. The original source locations for the wheat 

landraces are widely distributed across countries in Europe, 

Asia, and northern Africa (Fig. 1). Ethiopia and Turkey are the 

best represented countries with each having more than 20% of 

the landraces from the stem rust dataset. Complementary geo-

referencing was made at ICARDA for landraces with missing 

geographic coordinates based on the description of the origi-

nal collecting site. Only the 4932 landraces successfully geo-

referenced were included in this study. The original stem rust 

ratings (6889 trait observations) were reported as classifi ed into 

10 classes according to the degree of reaction to the disease. 

The stem rust trait ratings 0 through 3 (1915 landraces or 28% 

of the total) were considered as resistant to stem rust, ratings 4 

through 6 (2729 landraces or 40%) as intermediate, and ratings 

7 through 9 (2245 landraces or 32%) as susceptible. The com-

plete stem rust dataset for this study including the eco-climatic 

data is included as supplemental material (Supplemental File S1).

The Net Blotch Trait Dataset
The net blotch trait dataset is available online from the USDA 

NPGS GRIN database (USDA-ARS, 2010b). The FIGS net 

blotch set was extracted from the USDA GRIN NPGS database 

by Dr. Harold Bockelman and includes trait observations for the 

reaction to net blotch (Pyrenophora teres Drechs.) for a total of 

4645 barley (Hordeum vulgare L.) landraces (including greenhouse 

observations). Although net blotch seedling data from the green-

house were available, they did not diff erentiate the landraces to 

the degree of the fi eld trials. Thus, for this study we decided to 

focus on the analysis of the trait ratings from the fi eld trials. From 

the net blotch dataset a total of 2786 geo-referenced accessions 

Stem Rust

The stem rusts are caused by the fungus Puccinia grami-
nis Pers. 1794 and are a signifi cant disease aff ecting cereal 
crops. The formae speciales of Puccinia graminis f.sp. tritici is 
responsible for stem rust in wheat (McIntosh et al., 1995). 
E. C. Stakman provided early pioneering work on stem 
rust and identifi ed the fi rst unique races of this pathogen 
(Stakman, 1915; Stakman and Piemeisel, 1917). After a 
number of devastating rust epidemics in important wheat 
producing areas of countries such as Australia, Canada, 
and the United States, a long-term global collaboration 
to combat wheat rust was so successful that the stem rust 
reached almost nonsignifi cant levels by the 1990s (Singh 
et al., 2008). In 1998 a new isolate of stem rust designated 
Ug99 and typed to race TTKS caused severe damage to 
wheat in Uganda and Kenya. Pretorius et al. (2000) dis-
covered that this new stem rust race Ug99 showed viru-
lence against the widely used Sr31 stem rust resistance gene 
in wheat. This grasped again the full attention of crop 
scientists and revived targeted international crop research 
collaboration against stem rust in 2005 with the Borlaug 
Global Rust Initiative (http://www.globalrust.org [veri-
fi ed 1 June 2011]). When Ug99 continued to spread north 
through the eastern African highlands and across the Red 
Sea into Yemen, it also reached the wider public through 
the media (see for example Koerner, 2010). Flood (2010) 
is warning that action to combat plant health problems 
in general, with a specifi c and concerted action to com-
bat the Ug99 stem rust epidemic, is of vital importance 
to ensure food security. Identifi cation of novel sources of 
resistance to stem rust is urgent and a current priority of a 
number of crop research groups around the world.

Net Blotch

Net blotch is caused by a fungal pathogen (Pyrenophora 
teres Drechs.). It is known to cause serious harm to bar-
ley and typically reduce yields by 10 to 40% (Steff enson, 
1997). The disease thrives most under wet (high relative 
humidity) and warm conditions with temperature optima 
between 15 and 25°C depending on the region (Krupin-
sky et al., 2002). There are two common forms of the net 
blotch fungus: Pyrenophora teres f. teres produces a net-like 
pattern, while the Pyrenophora teres f. maculata produces 
more spot-like lesions on the leaves of the crop plants (Liu 
and Friesen, 2010). Afanasenko et al. (1995) reported that 
the resistance against Pyrenophora teres f. teres (net type) and 
the Pyrenophora teres f. maculata (spot type) of net blotch are 
independently inherited. New epidemics of the net blotch 
recently have been reported around the world (McLean et 
al., 2009; Liu and Friesen, 2010). Development of resistant 
varieties is the most cost-effi  cient method for control of 
net blotch ( Jalli, 2010a, b). Silvar et al. (2010) reported 
fi nding few examples of resistance to net blotch in the 
Spanish barley core collection.
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were tested under fi eld conditions during eight diff erent 

years (1988–2004) at four diff erent agricultural research sta-

tions: Langdon, ND (48°45′43″ N, 98°22′20″ W), Stephen, 

MN (48°27′03″ N, 96°52′30″ W), Fargo, ND (46°52′37″ N, 

96°47′20″ W), and Athens, GA (33°57′18″ N, 83°22′59″ W). 

The fi eld trial experiments were inoculated by isolate ND89-

19 of net blotch (Pyrenophora teres f. teres) using infected barley 

straws from the previous season (Bonman et al., 2005). The 

original net blotch trait ratings (2786 trait observations) were 

reported as classifi ed into nine classes with ratings 1 through 

3 (1115 landraces or 40% of the total records) considered as 

resistant to net blotch, ratings 4 through 6 (1367 landraces or 

49%) as intermediate, and ratings 7 through 9 (304 landraces 

or 11%) as susceptible. The original source locations for the 

barley landraces are widely distributed across 51 countries in 

Asia, Europe, and northern Africa (Fig. 2). A total of 1025 

(36.8%) of the landraces originate from Ethiopia. The next 

country ranked by total number of records in the dataset was 

China with 365 (13.1%) landraces. The complete net blotch 

dataset for this study, including climate data, is included as 

supplemental material (Supplemental File S2).

ICARDA Eco-Climatic Database
The ICARDA eco-climatic information system was created 

in 2003 covering the Central and West Asia and North Africa 

(CWANA) region (De Pauw, 2008). In 2005 the dataset was 

further extended to cover Europe and most of Asia. The 

“thin-plate smoothing spline” method of Hutchinson (1995), 

as implemented in the ANUSPLIN software (Hutchinson, 

2000), was used to convert the station based climatic data-

base into “climate surfaces” with a 30 arc-second (approxi-

mately 1 km) resolution grid. The dataset includes monthly 

mean values for minimum temperature (tmin), maximum 

temperature (tmax), precipitation (prec), and potential 

evapotranspiration (PET) as well as a wide range of derived 

climatic variables such as agroclimatic zone, aridity index, 

length of growing period, and others. The soil layers from 

the ICARDA eco-climatic information system are originally 

derived from the FAO Soil Map of the World (FAO, 1974, 

2007; FAO-UNESCO, 1995). The climate data for this study 

was extracted for each accession using the longitude and lati-

tude coordinates of the original collecting site.

WorldClim Eco-Climatic Database
Climate data for the net blotch dataset was extracted from 

the WorldClim dataset (Hijmans et al., 2005a; WorldClim, 

2010) with DIVA GIS (Hijmans et al., 2001, 2005b). The 

WorldClim dataset was developed (with the ANUSPLINE 

software [Hutchinson, 2000]) following a similar method 

as described above for the ICARDA eco-climatic informa-

tion system. The climatic layers from the WorldClim data-

set include monthly mean values for temperature (temp), 

minimum temperature (tmin), maximum temperature 

(tmax), precipitation (prec), and the derived bio-climatic 

(BIOCLIM) layers (Busby, 1991). The WorldClim dataset 

is available in diff erent spatial resolutions: 30 arc-seconds 

(approximately 1 km), 2.5 min (approximately 4.5 km = 20 

km2), 5 min (approximately 9.3 km = 86 km2), and 10 min 

(approximately 18.5 km = 342 km2).F
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Trait Mining Models
The underlying hypothesis for this study was that certain 

types of environments would favor the emergence of disease 

resistance within in situ populations of landraces. Negri et al. 

(2009:9) proposed to defi ne a landrace as a cultivated plant 

with the “lack of formal crop improvement” and “charac-

terized by a specifi c adaptation to the environmental condi-

tions of the area of cultivation.” The general approach was 

to classify collection site environments into those that are 

likely to yield a certain category of disease reaction. This was 

achieved by applying classifi cation models to one set of data 

in which the disease score is used to “train” the model so 

that it correctly classifi es environments according to disease 

type. Another “test” subset was used to proof the classifi ca-

tion model using the disease scores for the selected accessions.

Validation Subsets (Training Set and Test Set)
The training set used to calibrate the prediction mod-

els comprised 67% of the records, and the test set made 

up 33% of the records. For each subset the allocation of 

samples to the training set and the test set was a random 

process. The calibration of the model parameters was made 

with cross-validation (Hawkins et al., 2003). The samples 

from each of the test sets were only used to validate the 

predictive performance and were not included in any cali-

bration steps (Hawkins, 2004).

Classifi cation Algorithms
The predictive performance for four diff erent classifi cation 

methods was compared.

(1) Linear discriminant analysis (LDA). The LDA (Fisher, 

1936) classifi er assumes a normal (Gaussian) distribu-

tion for the predictor variables. Also, the residuals are 

assumed to show the normal distribution. The nor-

mality assumption can be tested for example with a 

Q-Q plot or a Wilk-Shapiro test (Shapiro and Wilk, 

1965). The LDA method requires more assumptions 

to be met than the other classifi cation methods of this 

study. However, parametric methods usually outper-

form nonparametric methods when the assumptions 

to the underlying data distribution are met. It would 

thus always be wise to include a parametric classifi -

cation method when the assumption of normality is 

evaluated to be reasonable.

(2) Partial least squares discriminant analysis (PLS-DA). 

Partial least squares discriminant analysis (Barker and 

Rayens, 2003) is based on the partial least squares 

(Wold, 1966; Wold et al., 1984). With PLS-DA the 

training set is used to calibrate new latent variables 

that can be seen as a linear combination of the previ-

ous multivariate variables. The unknown samples are 

projected into this new multivariate space defi ned by 

the latent variables. A separate submodel is calibrated 

for each class. All of these submodels are calibrated 

together in an iterative process to simultaneously fi t 

the independent predictor variables (climate data) 
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and the dependent response variables (trait data). Com-

pression of the original multivariate variables to latent 

factors or principal components will often provide a solu-

tion to the common problem of colinearity between the 

predictor variables.

(3) k-nearest neighbor (kNN). k-nearest neighbor is a pattern 

recognition method for classifi cation of objects based on 

the majority vote of the closest neighbors (Cover and Hart, 

1967). This is one of the simplest classifi cation algorithms. 

The kNN algorithm is a nonparametric classifi cation 

method and thus makes no assumption on the underlying 

data distribution (Duda et al., 2001). For all the kNN clas-

sifi ers in this study we used k = 1, in which the observation 

is assigned to the class of its nearest neighbor.

(4) Soft independent method of class analogy (SIMCA). Soft 

independent modeling by class analogy is a method of clas-

sifi cation in which separate principal component analysis 

(PCA) models are calibrated for each class in the dataset 

(Wold and Sjostrom, 1977; Wold, 1976) (similar as for PLS-

DA). These submodels are calibrated independently and only 

fi tted to the independent predictor variables (diff erent from 

the PLS-DA algorithm). The unknown samples are fi tted to 

each of the submodels and assigned to the submodel of the 

closest fi t. An unknown sample can in practice be assigned 

to multiple classes or to no class. The SIMCA method is a 

projection method in which the multivariate dataset under 

study is condensed to a set of lower-dimensional subspaces 

(PCA models). The SIMCA method requires few other 

assumptions than that the condensed subspaces provide a 

meaningful representation of the original dataset.

For each test set the classifi cation results were compared to 

the results from an actual random selection. For the random selec-

tion, the trait scores for each test set where reassigned using ran-

dom permutation of accession numbers. Using this approach the 

number of examples for each trait category remained unchanged, 

but any link between the trait and the eco-climatic description 

was broken. With the random selection experiments we can 

directly compare the performance of the classifi cation methods 

to the eff ect of a random selection in practice. The behavior and 

stability of the performance indicators compared to a random 

selection are illustrated here with a practical test.

All of the classifi cation tests for each subset were repeated 

three to fi ve times to provide a series of replicated classifi cation 

experiments. For each of these series the subset randomly was 

split into a new training set and a new test set. The classifi cation 

indicators reported below are the average from these replicated 

classifi cation experiments.

Trait Mining Prestudy
Before starting the trait mining experiments a series of prestudy 

tests were made to identify the most appropriate classifi cation 

algorithm (choosing from kNN, SIMCA, PLS-DA, or LDA), 

and the most appropriate number of levels for the trait score 

measurement scale (choosing from 2, 3, or 9 category levels). 

The most appropriate classifi cation method and number of lev-

els for the trait scale was next used for the corresponding series 

of trait mining experiments described below. The results from 

the prestudy tests are reported in Tables 1, 2, and 3.

Performance for the Models When the Stem Rust 
Disease Score Categories Were Rescaled
This study was designed to explore if reclassifi cation to fewer 

trait categories might contribute to improved predictions for 

the resistant landraces. The objective of this study was not to 

predict accurate levels of disease susceptibility but to identify 

the resistant landraces. The degree of disease susceptibility 

among the susceptible landraces was not the aim of this trait 

mining experiment. The disease score categories for stem rust 

were rescaled from a 0 to 9 scale as follows: S2 included disease 

scores reclassifi ed to two classes to represent resistance (0–3) 

and susceptibility (4–9), S3 included disease scores reclassifi ed 

to three classes (0–3), (4–6), and (7–9), and S9 included disease 

scores reclassifi ed to nine classes (0–1), 2, 3, 4, 5, 6, 7, 8, and 9. 

The net blotch dataset did not include the original trait score 

zero (0), but the reclassifi cation followed in every other respect 

exactly the same schema as for the stem rust set.

Trait Mining Experiments
The modeling experiments described here explore the predic-

tive performance when using diff erent data stratifi cation strate-

gies and diff erent eco-climatic data sets.

Experiment 1: Performance of Models 
When Different Eco-Climatic Data is Used
In this experiment the predictive power of the models to iden-

tify stem rust resistance in wheat were compared using the three 

diff erent eco-climatic data sets: the ICARDA eco-climatic data-

set respectively with and without the layers for PET included 

(ICARDA 30″ and ICARDA 30″ with PET [30 s = 1 km spatial 

resolution]) (De Pauw, 2008), the WorldClim dataset (World-

Clim 2.5′ [2.5 min = 4.5 km resolution]) (Hijmans et al., 2005a; 

WorldClim, 2010), and the BIOCLIM layers (Busby, 1991) 

derived from the WorldClim layers (BIOCLIM 2.5′ [4.5 km 

resolution]). The results from Exp. 1 are included in Table 4.

Experiment 2: Performance of Models 
After the Data is Stratifi ed According 
to Genetic Background
In this experiment the predictive power of the SIMCA models 

to identify stem rust resistance in wheat landraces were compared 

for two subsets containing data for Triticum aestivum L. and Triti-

cum turgidum L. The hypothesis was that the diff erent taxa (genetic 

background) of wheat might have slightly diff erent mechanisms of 

resistance against stem rust and thus a diff erent predictive associa-

tion between the eco-geographic parameters and the trait score. 

The results from Exp. 2 are included in Table 5.

Experiment 3: Performance of Models After the 
Data is Stratifi ed According to Test Site
In this experiment the predictive power of the SIMCA models 

to identify stem rust resistance in wheat were compared for two 

subsets. One subset containing data for scores obtained in St. 

Paul, MN, and the other containing scores obtained in Rose-

mount, MN. The results from Exp. 3 are included in Table 5.
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Experiment 4: Performance of Models After 
the Data was Stratifi ed According to Year of 
Screening
In this experiment the predictive power of the SIMCA mod-

els to identify stem rust resistance in wheat was compared for 

six subsets corresponding to what year the disease scoring was 

undertaken: 1988, 1989, 1991, 1992, 1993, or 1994. The results 

from Exp. 4 are included in Table 5.

Note that, for Exp. 1, 2, 3, and 4, collection site eco-cli-

matic data were included for all accessions scored. A total of 

6889 records with stem rust ratings (corresponding to a total of 

4932 genebank accessions) were processed, meaning that some 

of the sites (2013 sites in total) were represented in the analysis 

multiple times.

Experiment 5: Performance of the Models 
When Only One Accession per Site is Included 
in the Analysis
The complete trait datasets from the USDA includes only very 

few multiple measurements for the same landrace (replications), 

but there are often multiple landraces in the dataset that origi-

nate from the same source location. Thus, the eco-geographic 

Table 1. Comparison of the performance of (i) different classifi cation models and (ii) the performance of the soft independent 

modeling by class analogy (SIMCA) model using different levels of the trait measurement scale to predict the occurrence of 

stem rust resistance in wheat (prestudy 1).†

Dataset Model‡ Scale PPV§ LR+¶ Estimated gain

Stem rust LDA S3 0.48 (0.45–0.52)# 2.40 (2.18–2.64) 1.73 (1.61–1.85)

Stem rust PLS-DA S3 0.44 (0.41–0.47) 2.01 (1.86–2.17) 1.57 (1.46–1.68)

Stem rust kNN S3 0.49 (0.45–0.53) 2.46 (2.17–2.77) 1.75 (1.61–1.88)

Stem rust SIMCA S3 0.54 (0.50–0.59) 3.07 (2.66–3.54) 1.95 (1.79–2.09)

Stem rust SIMCA S9 0.53 (0.48–0.57) 2.86 (2.47–3.32) 1.88 (1.73–2.04)

Stem rust SIMCA S2 0.51 (0.48–0.55) 2.72 (2.42–3.07) 1.84 (1.70–1.97)

Random 0.29 (0.26–0.33) 1.04 (0.90–1.20) 1.03 (0.91–1.16)

†The reported performance indicators are the average from three to fi ve replications (with different random split to training set and test set) for the same full stem rust dataset. 

The record level data unit is here the trait measurement from the USDA net blotch set (6889 observations). The proportion true resistant samples in this dataset were 28% 

(prevalence = 0.28).
‡kNN, k-nearest neighbor; LDA, linear discriminant analysis; PLS-DA, partial least squares discriminant analysis.
§The positive predictive value (PPV) provides an indicator for classifi cation performance of resistant samples (positives).
¶The positive diagnostic likelihood ratio (LR+) provides a similar indicator that is less sensitive to the prevalence or proportion of resistant samples (positives) in the dataset.
#The 95% confi dence interval is included inside the parentheses.

Table 2. Comparison of the ability of different classifi cation models and different number of levels of the trait measurement 

scale to predict the occurrence of stem rust resistance in wheat (prestudy 2).†

Dataset Model‡ Scale PPV§ LR+¶ Estimated gain

Stem rust (site) LDA S3 0.39 (0.33–0.46) # 2.60 (2.12–3.23) 1.97 (1.65–2.32)

Stem rust (site) PLS-DA S3 0.37 (0.31–0.44) 2.42 (2.00–2.93) 1.89 (1.57–2.20)

Stem rust (site) kNN S3 0.44 (0.36–0.53) 3.21 (2.44–4.28) 2.23 (1.82–2.65)

Stem rust (site) SIMCA S3 0.50 (0.40–0.60 4.00 (2.85–5.66) 2.51 (2.02–2.98)

Stem rust (site) SIMCA S9 0.49 (0.41–0.59) 3.96 (2.91–5.43) 2.50 (2.03–2.93)

Stem rust (site) SIMCA S2 0.47 (0.39–0.55) 3.58 (2.75–4.69) 2.37 (1.96–2.77)

Random 0.19 (0.13–0.26) 0.94 (0.63–1.39) 0.95 (0.66–1.33)

†The record level data unit is here the collecting site from the stem rust dataset (total 2013 sites; prevalence = 0.20). The disease trait scores for all wheat landraces collected 

at the same site were averaged to make one data record for each distinct collecting site.
‡kNN, k-nearest neighbor; LDA, linear discriminant analysis; PLS-DA, partial least squares discriminant analysis; SIMCA, soft independent modeling by class analogy.
§PPV, positive predictive value.
¶LR+, positive diagnostic likelihood ratio.
#The 95% confi dence interval is included inside the parentheses.

Table 3. Comparison of the ability of different classifi cation models to predict the occurrence of net blotch resistance in barley 

(prestudy 3).†

Dataset Model‡ Scale PPV§ LR+¶ Estimated gain

Net blotch LDA S3 0.50 (0.45–0.56)# 1.52 (1.29–1.79) 1.26 (1.13–1.39)

Net blotch PLS-DA S3 0.48 (0.42–0.55) 1.41 (1.15–1.77) 1.21 (1.06–1.37)

Net blotch kNN S3 0.51 (0.46–0.56) 1.56 (1.33–1.82) 1.27 (1.14–1.40)

Net blotch SIMCA S3 0.54 (0.48–0.60) 1.75 (1.42–2.17) 1.35 (1.19–1.50)

Random 0.40 (0.35–0.45) 0.99 (0.84–1.17) 0.99 (0.87–1.12)

†The record level data unit is here the trait measurement from the USDA net blotch set (2786 observations; prevalence = 0.40).
‡kNN, k-nearest neighbor; LDA, linear discriminant analysis; PLS-DA, partial least squares discriminant analysis; SIMCA, soft independent modeling by class analogy.
§PPV, positive predictive value.
¶LR+, positive diagnostic likelihood ratio.
#The 95% confi dence interval is included inside the parentheses.
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parameters for the landraces collected at the same source loca-

tion are identical. A total of 1124 landraces from the Ethio-

pian stem rust set originated from only 191 diff erent source 

locations. For India, Afghanistan, and Turkey there were also 

more than twice as many landraces as source locations. This 

trait mining experiment in the stem rust set was designed to 

explore the eff ect of pooling observations by distinct source 

locations. The hypothesis was that source locations with high 

sample number would tend to dominate the models, and that 

reducing the number of landraces to one per collecting site 

would give the eco-geography of each site more equal infl uence 

on the prediction. In Exp. 5 the modeling design for Exp. 1 

above was repeated using only one accession per site. Thus only 

2013 records were processed in total for each experiment. The 

disease scores were averaged across accessions for sites contain-

ing multiple entries; thus only one (average) disease rating rep-

resented sites with multiple accessions. The results from Exp. 5 

are included in Table 6.

Experiment 6: Performance of the Models 
to Select Net Blotch Resistant Barley Accessions 
When using Different Eco-Climatic Datasets
In this experiment the predictive power of the models to iden-

tify net blotch resistance in barley were compared using the 

three diff erent eco-climatic datasets: the ICARDA eco-climatic 

dataset with and without the layers for PET (ICARDA 30″ and 

ICARDA 30″ with PET [30 s = 1 km spatial resolution]) (De 

Pauw, 2008), the WorldClim dataset (WorldClim 2.5′ [4.5 km 

resolution], WorldClim 5′ [9.3 km resolution], and WorldClim 

10′ [18.5 km resolution]) (Hijmans et al., 2005a; WorldClim, 

2010), and the BIOCLIM layers (Busby, 1991) derived from 

the WorldClim layers (BIOCLIM 2.5′, BIOCLIM 5′, and BIO-

CLIM 10′). The results from Exp. 6 are included in Table 7.

Evaluation of the Trait Mining Results
The target of this trait mining study was concerned with the 

identifi cation of resistant landraces rather than with the accurate 

classifi cation of the samples to the diff erent stem rust score cat-

egories. Thus, to assess the positive predictive performance for the 

identifi cation of resistant landraces, the so-called confusion matri-

ces (Kohavi and Provost, 1998) for each trait mining experiment 

was fi rst collapsed to a two by two table. The collapsed confusion 

matrix tabulated the predicted resistant and susceptible landraces 

against the actual observed number of resistant and susceptible 

samples from the test sets. The samples, scored as 0 through 3 for 

the stem rust set and 1 through 3 for net blotch (on the original 

trait scale) were pooled together and classifi ed as resistant samples. 

The samples scored as 4 through 9 on the original trait scale were 

classifi ed as susceptible samples. The landraces predicted to be 

resistant were either true positive (TP), when a landrace observed 

to be resistant was also predicted to be resistant (positive), or they 

were false positives (FP). Likewise the landraces predicted to be 

susceptible were either true negatives (TN) or false negatives (FN).

To establish and compare the predictive performance for 

the diff erent test models, we need metrics to compare the mod-

els. A number of diff erent indicators of inter-rater agreement 

have been developed for diff erent purposes (Gwet, 2010). When 

choosing the indicator to use it is important to remember the 

aim of the current study was to identify a smaller subset of land-

races more likely to be resistant to stem rust than what would 

be expected when selecting landraces by chance. We are thus 

more concerned with the specifi city of the model to identify 

Table 4. Performance of the soft independent modeling by class analogy (SIMCA) model to select stem rust resistant acces-

sions using different eco-climatic layers (ICARDA, WorldClim, and bio-climatic [BIOCLIM]) compared to a random selection 

(Exp. 1).†

Eco-climate‡ PPV§ LR+¶ Estimated gain

ICARDA 30″ with PET 0.55 (0.51–0.59)# 3.08 (2.67–3.54) 1.94 (1.81–2.11)

ICARDA 30″ 0.57 (0.52–0.61) 3.31 (2.87–3.82) 2.00 (1.87–2.17)

WorldClim 2.5′ 0.57 (0.52–0.61) 3.54 (3.05–4.10) 2.10 (1.94–2.25)

BIOCLIM 2.5′ 0.49 (0.45–0.53) 2.48 (2.16–2.86) 1.76 (1.59–1.89)

Random selection 0.29 (0.26–0.33) 1.04 (0.90–1.20) 1.03 (0.91–1.16)

†The record level data unit is here the trait measurement from the USDA stem rust set (6889 observations; prevalence = 0.28).
‡ICARDA 30 sec with potential evapotranspiration (PET), ICARDA 30 sec, ICARDA eco-climatic dataset (De Pauw, 2008) with the layer for potential evapotranspiration respec-

tively included and omitted and 30 sec spatial resolution; WorldClim 2.5 min (Hijmans et al., 2005a; WorldClim, 2010); BIOCLIM 2.5 min (Busby, 1991).
§PPV, positive predictive value.
¶LR+, positive diagnostic likelihood ratio.
#The 95% confi dence interval is included inside the parentheses.

Table 5. Performance of the soft independent modeling by 

class analogy (SIMCA) model to select stem rust resistant 

accessions, after stratifying the trait data according to (i) 

species, (ii) location of trial, and (iii) year of trail compared to 

a random selection (Exp. 2, 3, and 4).†

Stratifi ed subset LR+‡ Estimated gain Prevalence§

Bread wheat 4.27 (3.42–5.28)¶ 2.57 (2.28–2.90) 0.20

Durum wheat 1.76 (1.43–2.17) 1.32 (1.17–1.45) 0.44

St. Paul, MN 3.07 (2.62–3.59) 2.13 (1.93–2.40) 0.21

Rosemount, MN 2.54 (2.01–3.21) 1.55 (1.40–1.71) 0.41

Trial year 1988 4.44 (3.23–6.12) 3.70 (2.37–5.28) 0.06

Trial year 1989 2.16 (1.82–2.55) 1.38 (1.28–1.49) 0.48

Trial year 1991 2.53 (2.04–3.12) 1.92 (1.58–2.21) 0.21

Trial year 1992 4.67 (3.19–6.82) 2.28 (1.87–2.57) 0.29

Trial year 1993 6.18 (3.35–11.40) 2.17 (1.74–2.44) 0.36

Trial year 1994 2.86 (1.09–7.51) 2.18 (0.89–3.80) 0.17

Random selection 1.30 (1.02–1.68) 1.21 (0.98–1.47) 0.26

†This stem rust dataset is stratifi ed by the St. Paul, MN, Agricultural Research Sta-

tion and the Rosemount, MN, Agricultural Research Station, both located in the 

northern United States; by six distinct trial years, 1988, 1989, 1991, 1992, 1993, 

and 1994; and by the two wheat subspecies with the most data records (landra-

ces). The record level data unit is here the original observation measurement from 

the USDA stem rust set.
‡LR+, positive diagnostic likelihood ratio.
§The positive predictive value (PPV) indicator is not included to this table because the 

PPV is sensitive to the prevalence, which is very variable for these stratifi ed subsets.
¶The 95% confi dence interval is included inside the parentheses.
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the resistant samples than on the overall agreement related to 

correctly predicted samples.

Cohen’s Kappa (Kappa) is a popular measure of inter-rater 

agreement for categorical (qualitative) items (Cohen, 1960). Cohen’s 

Kappa is applied here as an indicator for the agreement between the 

actual observed trait scores and the predicted trait category as cal-

culated by the models. The Kappa inter-rater agreement indicator 

aims to calculate the observed agreement adjusted for the level of 

agreement that would be expected by chance. The value of Cohen’s 

Kappa ranges from –1 to +1, in which +1 implies perfect agreement, 

0 implies no relationship, and –1 implies perfect disagreement (Lan-

dis and Koch, 1977). There remains some controversy in particular 

related to the application and calculation of agreement expected by 

chance. Cohen’s Kappa, however, is widely used in the absence of 

standard, generally accepted alternatives (Gwet, 2010).

Among the other alternative indicators for predictive perfor-

mance the raw proportion observed agreement (PO) is perhaps 

the most intuitive (Altman and Bland, 1994a). The total number 

of overall observed agreement (TP + TN) is simply divided by 

the total number of samples (N). The proportion positive agree-

ment [PA = 2 × TP/(2 × TP + FP + FN)] might be a more 

appropriate indicator for our aim to identify the resistant (posi-

tive) samples. The positive predictive value (PPV = TP/(TP + 

FP)) is yet another suitable indicator to measure the predictive 

performance for identifi cation of resistant landraces (Altman and 

Bland, 1994b). The PPV measures the probability that a landrace 

predicted by the model to be resistant is truly resistant (observed 

as resistant in the test set). The PPV is inherently dependent on 

the prevalence of resistant samples. However, most of the trait 

mining test sets for this study have the same proportion of resis-

tant samples as the overall trait dataset, making the PPV a suit-

able indicator to compare the performance of these modeling 

experiments. Some subsets (e.g., split by experiment year or loca-

tion) show very diff erent prevalence for the proportion resistant 

samples. The prevalence was evaluated as the number of resis-

tant samples in relation to all samples for each test set. The posi-

tive diagnostic likelihood ratio (LR+ = [TP/(TP + FN)]/[FP/

(FP + TN)] = sensitivity/[1 – specifi city]) is more appropriate 

when comparing test sets with very diff erent prevalences (Alt-

man and Bland, 1994b). The positive diagnostic likelihood ratio 

(LR+) measures how much more likely it is for the model to pre-

dict a landrace to be resistant (positive) in the group of landraces 

observed to be resistant compared to making this prediction in 

the group of landraces observed to be susceptible. For each of 

the modeling tests we have also calculated the sensitivity [sen-

sitivity = TP/(TP + FN)] and the specifi city [specifi city = TN/

Table 6. Comparison of the performance of the soft independent modeling by class analogy (SIMCA) model to select wheat 

accessions resistant to stem rust using different eco-climatic data (ICARDA, WorldClim, and bio-climatic [BIOCLIM]) and with 

distinct collecting sites as the record level data unit (Exp. 5).†

Eco-climate‡ PPV§ LR+¶ Estimated gain

ICARDA 30″ with PET 0.53 (0.44–0.65)# 4.70 (3.41–7.47) 2.76 (2.29–3.39)

ICARDA 30″ 0.43 (0.33–0.53) 3.16 (2.13–4.51) 2.23 (1.73–2.74)

WorldClim 2.5′ 0.55 (0.46–0.67) 4.46 (3.20–7.02) 2.55 (2.09–3.09)

BIOCLIM 2.5′ 0.46 (0.40–0.56) 3.55 (2.93–4.96) 2.38 (2.08–2.90)

Random selection 0.19 (0.13–0.26) 0.94 (0.63–1.39) 0.95 (0.66–1.33)

†The record level data unit is here the collecting site from the stem rust dataset (total 2013 sites; prevalence = 0.20). The disease trait scores for all wheat landraces collected 

at the same site were averaged to make one data record for each distinct collecting site.
‡ICARDA 30 sec with potential evapotranspiration (PET), ICARDA 30 sec, ICARDA eco-climatic dataset (De Pauw, 2008) with the layer for potential evapotranspiration respec-

tively included and omitted and 30 sec spatial resolution; WorldClim 2.5 min (Hijmans et al., 2005a; WorldClim, 2010); BIOCLIM 2.5 min (Busby, 1991).
§PPV, positive predictive value.
¶LR+, positive diagnostic likelihood ratio.
#The 95% confi dence interval is included inside the parentheses.

Table 7. Comparison of the performance of the soft independent modeling by class analogy (SIMCA) model to select barley 

accessions resistant to net blotch when using different eco-climatic data (and different spatial resolutions) (Exp. 6).†

Eco-climate‡ Spatial resolution PPV§ LR+¶ Estimated gain

ICARDA 30″ with PET 1 km 0.52 (0.47–0.57)# 1.67 (1.43–1.95) 1.32 (1.19–1.45)

ICARDA 30″ 1 km 0.53 (0.47–0.58) 1.69 (1.44–1.99) 1.33 (1.19–1.46)

WorldClim 2.5′ 4.5 km 0.56 (0.50–0.61) 1.81 (1.52–2.17) 1.36 (1.23–1.49)

WorldClim 5′ 9.3 km 0.53 (0.48–0.59) 1.71 (1.44–2.04) 1.33 (1.20–1.47)

WorldClim 10′ 18.5 km 0.54 (0.47–0.60) 1.71 (1.37–2.14) 1.33 (1.18–1.50)

BIOCLIM 2.5′ 4.5 km 0.55 (0.46–0.64) 1.90 (1.34–2.72) 1.40 (1.17–1.63)

BIOCLIM 5′ 9.3 km 0.55 (0.46–0.63) 1.86 (1.34–2.56) 1.39 (1.16–1.58)

BIOCLIM 10′ 18.5 km 0.56 (0.48–0.63) 1.89 (1.43–2.53) 1.40 (1.20–1.59)

Random selection 0.40 (0.35–0.45) 0.99 (0.84–1.17) 0.99 (0.87–1.12)

†The bio-climatic (BIOCLIM) eco-climatic layers are included with the same resolutions. The record level data unit is here the original observation measurement from the 

USDA net blotch dataset (total 2786 accessions; prevalence = 0.40).
‡ICARDA 30 sec with potential evapotranspiration (PET), ICARDA 30 sec, ICARDA eco-climatic dataset (De Pauw, 2008) with the layer for potential evapotranspiration 

respectively included and omitted and 30 sec spatial resolution; WorldClim 2.5 min, WorldClim 5 min, and WorldClim 10 min (Hijmans et al., 2005a; WorldClim, 2010); BIO-

CLIM 2.5 min, BIOCLIM 5 min, and BIOCLIM 10 min (Busby, 1991).
§PPV, positive predictive value.
¶LR+, positive diagnostic likelihood ratio.
#The 95% confi dence interval is included inside the parentheses.
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(TP + FP)] indicators (Altman and Bland, 1994a). The sensitivity 

is the proportion of actual resistant landraces that are correctly 

identifi ed (predicted by the model) as such. The specifi city is 

the proportion of susceptible landraces that are correctly identi-

fi ed. The last performance indicator reported here is the Yule’s Q 

(Yule’s Q = [OR – 1]/[OR + 1], in which the odds ratio [OR] 

= [TP × TN]/[FN × FP]). The odds ratio can be interpreted as 

the magnitude of association between the model predictions and 

the actual observed trait values. The Yule’s Q is only a transfor-

mation of the odds ratio so that the indicator takes values in the 

range between –1 and 1. For more information and additional 

other alternative indicators for the predictive performance for 

classifi cation tests see the text book by Agresti (2002) or the more 

recent text book by Gwet (2010).

All of the reported performance metrics are the average 

from a series of replicated trait mining tests for each subset. 

The estimate for the gain or improved predictive performance 

compared to a random selection for each trait mining test set 

is included in the right-side column of the results tables as the 

estimated gain. The gain is calculated as the PPV divided by the 

proportion resistant samples (prevalence) for each subset.

To further illustrate in practice the performance for a com-

plete random selection, a series of actual random selections were 

made for each test set (with the same number of replications as 

for the trait mining models). The average of the tests with the 

random selection is reported at the bottom of the tables (rows 

marked “random selection”).

For this study all performance indicators are reported in 

the supplemental material (Supplemental Table S3). For clar-

ity, however, in the results section only the PPV, LR+, and the 

estimated gain indicators are reported.

The 95% confi dence interval is reported for the perfor-

mance indicators. The confi dence intervals are included in a 

parenthesis after each indicator. The reported confi dence inter-

val upper and lower boundaries were calculated with the online 

Statistics Calculator from the Centre for Evidence-Based Medi-

cine (CEBM, 2010).

Software
The classifi cation models were calculated with the MATLAB 

software (MathWorks, 2009) and the PLS Toolbox (version 5.8; 

Eigenvector, 2010). The Cohen’s Kappa indicator was calcu-

lated with a MATLAB script by Cardillo (2007).

RESULTS

The initial explorative PCA showed no clear grouping 
for the trait score categories (for either the stem rust or 
the net blotch sets). Only one sample was identifi ed as 
a very strong outlier. This was landrace PI 212925 from 
the stem rust set. We could not identify why this landrace 
behaves as an outlier, yet the sample was very atypical of 
the other samples. We decided to remove this sample from 
the further analysis as reported below (6889 records with 
trait observations for 4932 wheat accessions collected from 
2013 distinct sites). The initial PCA did not identify any 
notable outliers in the net blotch set (2786 trait observa-
tions from the same number of barley accessions).

Prestudy 1

The purpose of the fi rst prestudy (prestudy 1), reported in 
Table 1, was to identify the most appropriate classifi cation 
algorithm to use in the experiments reported below as well 
as the most appropriate score reclassifi cation scheme to use. 
All of the models used were able to signifi cantly improve 
on a random selection to capture stem rust resistance. For 
example, even the lowest performing classifi cation model 
(PLS-DA) was 1.57 (estimated gain in Table 1) times more 
eff ective when compared to a random selection. However, 
there were signifi cant diff erences in the performance of the 
classifi cation models. The PPV, LR+, and estimated gain per-
formance indicators reported in Table 1 demonstrate that the 
SIMCA model had the most eff ective predictive power; fol-
lowed by the kNN, LDA, and PLS-DA models, the latter of 
which yielded performance indicators that were signifi cantly 
lower than the others. All the classifi cation algorithms have 
signifi cant higher predictive performance indicators than the 
random selection (not overlapping confi dence interval).

The degree to which the score data was recategorized 
had an eff ect on the predictive power of all of the models. 
The results for the SIMCA model, detailed in Tables 1, 2, 
and 3, show that when the original 0 through 9 scoring 
categories are reclassifi ed to three categories the models 
perform better than if asked to predict membership in two 
categories or nine categories.

Prestudy 2
The second prestudy (prestudy 2) also examined the most 
appropriate classifi cation algorithm to use as well as the 
most appropriate score reclassifi cation scheme. This study 
diff ers from prestudy 1 in that the disease scores for sites 
represented by multiple accessions were averaged. Thus 
only one record per site was included in the analysis.

The trends demonstrated in Table 1 are corroborated by 
the results in Table 2. That is, the most eff ective classifi ca-
tion algorithm to use is SIMCA, and three trait categories is 
the most appropriate trait scale to maximize the predictive 
performance of the models. However, processing the USDA 
stem rust dataset to include unique records for each distinct 
collecting site made a substantial improvement to the predic-
tive performance. Note that the proportion of resistant cases 
(prevalence) is lower in the set with distinct sites (20% com-
pared to 28% for the full set; see Supplemental Table S3.1). 
The PPV indicator is sensitive to the prevalence, so here we 
should focus on the more robust LR+ (and the estimated gain) 
than on the PPV indicator when comparing the performance 
for this dataset (prestudy 2) with the full set (prestudy 1). The 
estimated gain for the SIMCA model when using unique 
collection sites is 2.51 (150% higher hit rate compared to a 
random selection) compared to the gain of 1.95 (95%) when 
multiple accessions per site are processed. This is a substantial 
improvement for this indicator (even if the confi dence inter-
vals for the same classifi cation algorithms in prestudy 1 and 2 
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are marginally overlapping). The LR+ indicator also shows 
a substantial improvement for the experiment with distinct 
collecting sites. In other words, these results indicate that it is 
better to average the scores across accessions when there are 
multiple accessions per site than to have a particular site rep-
resented multiple times in the analysis. In prestudy 2 (same 
as for prestudy 1) all of the classifi cation algorithms have sig-
nifi cant higher predictive performance indicators than the 
random selection (not overlapping confi dence interval).

Prestudy 3
The aim of the third prestudy (prestudy 3) was to deter-
mine the most eff ective classifi cation model to predict the 
occurrence of net blotch resistance in barley, the results 
of which are detailed in Table 3. As for the prestudies in 
the stem rust set (prestudy 1 and 2), the SIMCA model 
outperformed the other models. Similar trends in relative 
predictive powers of the models were also demonstrated 
(SIMCA > kNN > LDA > PLS-DA). In this study the 
performance of the SIMCA model was 35% higher than 
for an expected random selection.

What is notable though is that while the LR+ and esti-
mated gains demonstrate that net blotch resistance can be 
eff ectively predicted using eco-climatic parameters, the 
predicative power of the models is signifi cantly lower than 
that demonstrated for the predictions in the stem rust set. 
For both LR+ and the estimated gain, the confi dence inter-
vals (95% CI) in the stem rust set are above and not overlap-
ping with the confi dence interval for these indicators in net 
blotch set. For the stem rust set, when using the SIMCA 
method, the 95% confi dence interval estimated the value 
for LR+ to be between 2.66 and 3.54 (and for the stem 
rust set with distinct sites to be between 2.85 and 5.66). 
For the net blotch set the respective confi dence interval was 
estimated to be between 1.42 and 2.17. For prestudy 3 the 
PLS-DA algorithm has marginally overlapping confi dence 
interval for the performance indicators when compared to 
the random selection. The other classifi cation algorithms 
have signifi cant higher predictive performance than the 
random selection, the same as for prestudy 1 and 2.

Based on the above prestudies (Tables 1, 2, and 3), 
the models for the trait mining experiments reported with 
Tables 4, 5, 6, and 7 were calibrated with the SIMCA clas-
sifi cation algorithm using a trait measurement scale with 
three categories.

Experiment 1
The aim of this experiment was to see if there were signif-
icant diff erences between how the diff erent eco-climatic 
datasets aff ect the predictive power of the models. The 
results for the SIMCA model are reported in Table 4.

While the performance indicators for the SIMCA model 
all score slightly higher for the WorldClim 2.5′ dataset than 
the two ICARDA sets, the confi dence intervals indicate 

that there is little diff erence between these sets (Table 4). 
This result was expected because both the WorldClim and 
the ICARDA ecological database are constructed using the 
same spatial interpolation method and is to a large extent 
(although not fully) based on the same climatic data sources. 
However, the model’s predictive power was signifi cantly 
lowered when the BIOCLIM 2.5′ set (which are a diff er-
ent class of eco-climatic parameters) was used. Despite this, 
using the BIOCLIM 2.5′ set of eco-climatic parameters was 
still 73% more eff ective than making a random selection. 
The BIOCLIM set is derived from the WorldClim set, and 
these results thus indicate that using the “raw” WorldClim 
layers give a better predictive performance for this dataset 
than using the derived BIOCLIM layers.

The ICARDA eco-climate layers with PET included 
were used for the results reported from Exp. 2, 3, and 4 
(Table 5). The choice of using these eco-climatic layers was 
made before analyzing the results from Exp. 1 (Table 4).

Experiment 2
The aim of this study was to see if there was a diff erence in the 
predictive performance of the SIMCA model when applied 
to discrete datasets for Triticum aestivum and Triticum turgidum. 
When the dataset was stratifi ed based on genetic background, 
the LR+ indicator showed an even higher response: 4.27 for 
bread wheat compared to 1.76 for durum wheat (Table 5). 
The bread wheat subset has substantially higher predictive 
performance compared to the random selection. The durum 
wheat subset has overlapping confi dence interval (95% CI) 
with the random selection and thus we have no signifi cant 
predictive eff ect from the models in this subset.

Experiment 3
The predictive performance of the SIMCA model also dif-
fered when the stem rust data was split according to dis-
ease test site. The models performance using the St. Paul 
data was signifi cantly higher than those obtained for Rose-
mount (LR+ = 3.07 and 2.54, respectively; Table 5). Both 
subsets (St. Paul and Rosemount), however, performed sig-
nifi cantly better when compared to a random selection.

Experiment 4
Stratifying the data according to year of trial also sig-
nifi cantly aff ected the performance of the models. Again, 
notice that the stratifi ed subsets often have very diff erent 
proportions of resistant samples (prevalence), so the LR+ 
should be compared rather than the PPVs. Despite the dif-
ferences in the models’ performance when the data were 
split into years of experiment each result was signifi cantly 
higher than a random selection process (LR+; Table 5).

Experiment 5
Processing the USDA stem rust dataset to include unique 
records for each distinct collecting site made a substantial 
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improvement to the predictive performance in that the mag-
nitude of the LR+ and estimated gain was greater in this 
experiment (Table 6) than those reported for Exp. 1 (Table 
4). Note that the proportion resistant cases are lower in the 
set with distinct sites (20% compared to 28% for the full set).

In Exp. 1 (Table 4) the WorldClim-2.5′ eco-climatic lay-
ers gave the most eff ective identifi cation of samples resistant to 
stem rust. By contrast, in Exp. 5 (Table 6) the ICARDA-30″ 
with PET eco-climatic layers showed the highest PPV, LR+, 
and estimated gain when compared to the other eco-climatic 
sets. However there was very little diff erence in predictive 
performance between the eco-climatic layers. None of the 
eco-climatic layers in Exp. 5 produced signifi cant higher 
performance than any of the other layers (overlapping 95% 
confi dence intervals; LR+; Table 6).

All of the models (eco-climatic sets) in Exp. 5 have 
substantially higher predictive performance compared to 
the random selection (by a very good margin not overlap-
ping 95% confi dence intervals).

Experiment 6
Since the predictive performance in prestudy 3 for net 
blotch was signifi cantly lower than that observed for stem 
rust (compare Tables 1 and 3) we explored the predictive 
performance for diff erent climate data sets in more detail 
in this experiment than we did for the stem rust set to see 
if the performance could be improved.

All the eco-climatic sets yielded hit rates, for iden-
tifi cation of samples resistant to net blotch, 32 to 40% 
higher than if selections had been made at random (Table 
7). However, while the magnitudes of the LR+ and esti-
mated gain for the BIOCLIM data show a marginally bet-
ter performance than other classes of eco-climatic data, 
the confi dence intervals indicate there was no appreciable 
diff erence between using the diff erent eco-climatic sets 
or by using diff erent degrees of resolution for the climatic 
surfaces (Table 7). That is, the fi ner resolutions did not 
improve the predictive performance of the model. Fur-
ther, the predictive performance for the net blotch dataset 
still remained signifi cantly poorer than those achieved for 
the stem rust dataset.

DISCUSSION
This study clearly shows that the eco-geographic distribution 
of both stem rust resistance in wheat and net blotch in barley 
is not random but rather is linked to climatic factors. This 
supports the fi ndings of Bonman et al. (2005, 2007) for rust 
and blotch diseases. Further, if this holds true for stem rust 
and net blotch then it is reasonable to assume it would hold 
true for other pests and diseases. As such, we can conclude 
that variables describing collection site environments can be 
used to identify disease or pest resistant landraces or wild 
relative accessions conserved in genetic resource collections 
at a better frequency than if material is selected at random or 

with a core collection. Trait mining using FIGS requires a 
small training set with trait scores to be available for the cali-
bration of the model. While the work of El Bouhssini et al. 
(2009, 2010) and Bhullar et al. (2009, 2010) showed how this 
can be done to good eff ect for both pests and diseases, their 
studies did not include a comparison to a random selection 
process. By contrast this study did and thus can be considered 
as the fi rst defi nitive proof of concept for the FIGS strategy 
applied to genebank mining for useful traits.

An important limitation for the exploitation of the 
link between the eco-climatic data and the trait property 
is the requirement of a small set a priori trait data to train 
the trait mining model. A heuristic approach to incor-
porate expert knowledge to select samples for the initial 
training set will help to reduce this dependence of a priori 
trait data. However, this training set needs to be screened 
before the fi rst trait mining model can be calibrated. The 
further FIGS sets can be developed in a stepwise manner 
to incorporate all samples screened each trial season in the 
trait mining model to select the samples for the next trial 
season. Another limitation when using the FIGS strategy 
is the requirement of geo-referenced collecting sites. The 
eco-climatic dataset is extracted based on the geographic 
coordinate. Some of the genebank accessions lack appro-
priate information required to identify the collecting site.

The indications are that the modeling approaches used 
in this study could be useful to predict disease resistances 
in untested germplasm, provided there are data that can be 
used as a trainer set. However, this study also indicates that 
the models used here are sensitive to diff erences in where 
and when screenings take place (Exp. 3 and 4), the pathogen 
being tested (Exp. 1 compared to Exp. 5), and the host crop 
(Exp. 2). For the stem rust set the race used as inoculum 
was also diff erent between trial years and trial season, which 
likely contribute to the diff erence in predictive performance 
observed for Exp. 2. The utility of these models in an applied 
context are still yet to be established. In a follow on study by 
the same authors the same models and trainer data deployed 
in this study were used to select small subsets of wheat land-
race material with a higher than random frequency of Ug99 
resistance. This study included 4563 wheat landraces screened 
for resistance to stem rust Ug99 in Yemen during 2007. The 
observed trait scores were not revealed to the person making 
the trait mining models except from a small training set of 
825 samples (20%). The trait mining model developed using 
the same method as described here was used to select a sub-
set of 500 samples predicted to have a higher likelihood of 
resistance for Ug99. The complete set included 10.2% resis-
tant samples while the selected set of 500 samples was found 
to have 25.8% resistant samples; thus demonstrating that the 
models and approach used here can indeed be applied to a 
real life genebank situation (unpublished data, 2010). The 
challenge now is to improve the robustness and predictive 
power of the approaches used.
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The initial prestudy tests revealed that for these trait 
datasets (stem rust and net blotch sets) the SIMCA classifi -
cation algorithm produced the best models. If the datasets 
had fulfi lled the parametric assumptions (normal distribution 
of variables and residuals) then we would have expected the 
LDA and PLS-DA algorithms to produce the best models. 
This is not the case for these datasets. The SIMCA algorithm 
can be seen as similar to the kNN approach in that it selects 
the class of PCA model to which the sample is most similar, 
while kNN selects the class that is most similar to the nearest 
sample. The prestudy tests revealed that the SIMCA models 
performed better than the kNN models (Tables 1, 2, and 3) 
and thus would be the model of choice to use in an applied 
context when the data are not normally distributed.

Reclassifi cation of the Measurement Scale
For the stem rust set the SIMCA models for diff erent 
reclassifi cation of the measurement scale indicated that the 
reclassifi cation to use a scale with three levels improved the 
predictive performance. However, it must be noted that the 
reclassifi cation must make sense in terms of what the mea-
surement scale represents. That is, in this case disease scores 
from 0 through 3 can be considered as resistant, 4 through 6 
as moderately resistant, and 7 through 9 as susceptible. The 
original trait measurement scale with 9 or 10 category levels 
caused problems for the calibration of some of the models 
(in particular for the stratifi ed subsets with fewer number of 
samples) because of the lack of samples to represent some of 
the category levels. Even for the training sets with samples 
to represent all category levels a high number of levels may 
cause other issues. One such issue relates to how the clas-
sifi er relates to the so-called level of measurement. Stevens 
(1946) suggested a formal taxonomy for diff erent types of 
measurement scales (nominal, ordinal, interval, and ratio). 
All of the classifi ers we used in this experiment (LDA, PLS-
DA, kNN, and SIMCA) only make use of information 
from a nominal type measurement scale. This means that 
the classifi ers do not assume any order in the category levels 
and does not “know” that the trait score 2 is between trait 
score 1 and trait score 3. This means that including more 
category levels in the dataset does not give the classifi er 
more useful information to identify the resistant samples 
based on the order of the category levels. The reduction 
to a measurement scale with all the target samples (resis-
tant landraces) grouped together is likely to give the clas-
sifi er more information relevant to the task at hand—that 
is to discriminate the resistant samples from the susceptible 
samples. Following this argument one might expect that 
the trait scale with two category levels would be the best 
alternative. This was not the case in this study (prestudy 1 
[Table 1] and prestudy 2 [Table 2]) in which the S3 scale 
showed a tendency to give the highest predictive perfor-
mance (however, not statistically signifi cant as evaluated 
by the overlapping 95% confi dence intervals). It is possible 

that the samples from the original trait scores 7 through 9 
provides the classifi er with more coherent examples of the 
diff erence between the resistant and the susceptible samples 
than using original trait scores 4 through 9 as examples of 
susceptible samples. A combination of samples from the 
intermediate resistance and the susceptible groups would 
thus remove information that the model otherwise was able 
to exploit, while reducing the original measurement scale 
to three levels only removes information that the model 
was not able to exploit.

In the fi nal step to evaluate the classifi cation perfor-
mance the predicted trait scores were reduced to only two 
levels with the confusion matrix. This last step of the trait 
mining experiments reported here, however, was made 
after the classifi er has extracted information from the data-
set and was motivated by the primary interest of this study 
to evaluate the performance of the classifi er to identify 
resistant samples (positives) rather than to distinguish resis-
tant samples from intermediate and susceptible samples.

Stratifi cation by Species and Screening 
Year and Location
For all of the stratifi cation subsets the trait mining models 
perform better than a random selection. For some subsets 
the predictive performance is notably higher than for other 
subsets. But when we compare the predictive performance 
for diff erent stratifi ed subsets in the same group to the over-
all average predictive performance, we generally fi nd that 
some subsets perform better while other subsets in the same 
groups of subsets perform lower than the overall average. 
For the stem rust set (Table 5) we found that some of the 
models limited to one single species, experiment site, or trial 
year perform better than the overall average performance, 
while others in the same group perform lower than the 
overall average (see Table 1, line 4). Similar tests in the net 
blotch set (not reported; see Supplemental Table S3.5) with 
stratifi cation by experiment site and year show the same 
pattern. Thus we did not observe any clear evidence that 
splitting the full dataset into smaller stratifi ed subsets con-
taining similar samples provides any general improvement 
in predictive performance. In terms of creating data sub-
sets across diff erent models there is still the question: Does 
adding more predictive variables (more eco-geographical 
layers; see below) and splitting the data to diff erent genetic 
backgrounds improve the prediction?

The Bio-Climatic Layers
The BIOCLIM variables (Busby, 1991) are derived from 
the raw climate variables with the aim to better describe 
the eco-climatic environment with parameters that are 
more directly relevant for the description of the ecologi-
cal niche. However, for the trait mining experiments with 
the stem rust set, the predictive performance is signifi cantly 
higher when using the raw climate variables rather than the 
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derived BIOCLIM variables (not overlapping 95% CI for 
the WorldClim layers compared to the BIOCLIM layers in 
Exp. 1; Table 4). Note that in the net blotch set this result is 
reversed, and here the BIOCLIM eco-climatic set calibrates 
the models with the highest predictive performance (Exp. 
6; Table 7). The original purpose of developing the BIO-
CLIM variables was for the calibration of envelope models 
in which the maximum and minimum value for each of 
the eco-climatic variables is assumed to defi ne the bound-
aries of the species habitat (Busby, 1991; Franklin, 2010). 
For this study we have not explored the envelope modeling 
principle but rather used standard multivariate classifi cation 
methods. Our study indicates that for the stem rust set the 
raw eco-climatic variables perform better than the derived 
BIOCLIM variables when using the SIMCA classifi er. It is 
possible that the processing of the raw climate variables into 
the BIOCLIM variables does not always preserve all the 
predictive information content for our approach.

The Potential Value of Additional 
Eco-Geographic Layers
The second observation related to the eco-climatic vari-
ables is that when the PET, from the ICARDA eco-cli-
matic database, is added to the eco-climatic variables, 
the predictive performance is sometimes slightly higher 
(Table 6). This climate variable is only available for the 
ICARDA eco-climatic dataset. When we repeat the same 
trait mining experiments with PET included or excluded, 
we fi nd for Exp. 5 (Table 6) (but not for Exp. 1 [Table 
4] and Exp. 6 [Table 7]) that including this eco-climatic 
property improves the predictive performance. This indi-
cates that the PET climatic layer could in some contexts 
carry independent predictive information that is useful to 
the trait mining models. This is hardly surprising in that 
atmospheric humidity around the plant directly impacts 
the PET and it is widely accepted that high humidity is 
associated with infection by fungal type plant pathogens 
(e.g., Hoff mann and Schmutterer, 1983).

Whatever the underlying reason, this result leads us to 
suggest that choosing appropriate eco-climatic variables 
will be crucial to improving the predictive performance 
of FIGS. For example, in this study monthly variables 
were used that described the entire year from January to 
December. However, for a given collection site the grow-
ing season usually does not start in January and does not 
last the whole year thus making some monthly variables 
not as relevant as others. A suggestion for further FIGS 
studies of this kind would thus be to explore the eff ects 
on the predicative power by (i) aligning monthly variable 
according to onset of growing period and (ii) only includ-
ing monthly variables that are within the growing period 
for a given site. This, however, would necessitate accurate 
estimations of the onset of growing period. Continuous 
surfaces for this variable have been developed at ICARDA 

by De Pauw et al. (personal communication, 2010) and 
are currently being used in a study as suggested here.

Predictive Performance is Lower 
for Net Blotch than for Stem Rust
Although we see a similar pattern of the performance 
indicators when compared to the random selection, the 
predictive performance indicators are substantially lower 
for the net blotch set than they are for the stem rust set. 
Afanasenko et al. (1995) discovered that the resistance in 
barley against net blotch caused by Pyrenophora teres f. teres 
(net form) and Pyrenophora teres f. maculata (spot form) are 
inherited independently. Perhaps resistance to net blotch 
in barley is more complex than the resistance to stem rust 
in wheat and thus more diffi  cult to capture using the mod-
els developed in this study. Bonman et al. (2005) found 
that the response to net blotch in this dataset is correlated 
to the winter habit of the germplasm samples. It is possible 
that a trait mining study on subsets for each winter habit 
separate would give a higher predictive performance. 
However, overall both datasets show a very satisfactory 
predictive performance for the FIGS strategy in this study.

Distinct Collecting Sites
Many genebanks contain multiple accessions from the same 
collection site. This could be due to a variety of reasons 
including multiple accessions being collected from the 
same site, one accession being split into diff erent genotypes, 
non-geo-referenced accessions from a given province being 
assigned a collection site geo-coordinate that corresponds 
with the central point of the province, or material being 
stored in a collection are assigned collection site geo-coor-
dinates corresponding to the physical location of the collec-
tion. Clearly, to use accessions in which the latter example 
is the case in a FIGS analysis would not be appropriate. 
However, the FIGS approach is relevant if the collection site 
geo-coordinates are reasonably accurate; thus, the question 
then becomes how one treats multiple accessions per collec-
tion site when using a FIGS approach.

The results of Exp. 5 (Table 6) suggest that, for anal-
yses such as those reported, it is better to use an aver-
age score across accessions from the same site so that the 
site representation in the analysis is kept to a single entry. 
Many of the collecting sites in the stem rust set have a 
very high number of accessions collected at the same site. 
During the calibration of the classifi cation models these 
collecting sites provide a very high number of examples 
from which the models could learn. The models could 
thus be biased, focusing too much on these collecting sites 
and neglecting useful information from the collecting 
sites with fewer accessions. Another contributing explana-
tion could perhaps be that some of the accessions from the 
same collecting site have very diff erent trait score values. 
The calibration of classifi cation models would thus receive 
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a number of confl icting examples linking the same eco-
geographic pattern to both high trait scores and to low 
trait scores. For the dataset with distinct sites, the average 
of the diff erent trait scores for each site gave the calibra-
tion routine only one example of the link between the 
eco-geography and trait score for each site.

Different Resolutions 
for the Eco-Climatic Layers
A somewhat unexpected result was that the fi ner spatial 
resolution for the eco-climatic layers did not improve the 
predictive performance (Exp. 6; Table 7). This experiment 
was only made for the net blotch set. Even if the predictive 
performance was slightly higher for the fi ner resolutions, the 
95% confi dence intervals clearly show that the observed dif-
ferences between the diff erent resolutions are insignifi cant. 
In mountainous areas the diff erences in particular for tem-
perature, but also for precipitation can be substantial within 
the diff erent spatial resolutions explored. However the area of 
(adaptive) cultivation for a landrace will sometimes be larger 
than even the largest grid cell we explored (10 arc-minutes = 
18.5 km = 342 km2). It is further possible that the geo-ref-
erenced coordinates for the reported collecting site is not the 
center point for the area of cultivation for the landraces. In 
some cases the collecting site might even be a farmers market 
in close proximity to the typical cultivation area. For these 
examples the eco-climate of the coarser spatial resolutions 
might be a better representative of the typical eco-climate of 
the landrace than the eco-climate of the smaller resolution 
pixel centered at the collecting site. Further experiments to 
explore the eff ect of the spatial resolution for the eco-climatic 
layers would be useful.

Assumptions for the Focused Identifi cation 
of Germplasm Strategy Approach
The FIGS strategy is based on the assumption that the 
expression of a useful trait, for example pest resistance, in 
landraces (and crop wild relatives) is linked to the environ-
mental parameters describing the collection site and that 
we can build a statistical model to defi ne a signature for 
the eco-geography of these landraces. The model in this 
study is applied as a search pattern to identify other landra-
ces originating from locations with similar eco-geography 
as the resistant landraces. In practice these landraces would 
be selected as candidate samples for a fi eld trial to screen 
for the target trait. Trait mining with FIGS aims to iden-
tify a higher proportion of resistant landraces than would 
be expected without the application of this selection strat-
egy (Mackay and Street, 2004).

When modeling the crop resistance against a patho-
gen it is important to remember that the distribution of 
the pathogen is directly linked to the eco-geography. 
For example, given that many pathogens are sensitive to 
humidity, it is possible that the improved performance of 

the SIMCA model demonstrated in Exp. 5 was due to the 
inclusion of the evapotranspiration parameters.

For pathogens such as stem rust the distribution of 
the alternative host, barberry (Berberis L.), is required for 
sexual reproduction of the pathogen. The virulence of 
the pathogen is thus expected to be higher in areas where 
barberry grows in the proximity of the cultivated crop 
plants. The predictive association between the resistance 
trait and the eco-climatic variables we have identifi ed 
with this study is thus, at least partly, an indirect link. The 
models are likely to describe the suitable eco-geography 
where the pathogen thrives and thus are likely to impose 
a selection pressure for the emergence of resistance genes 
within in situ populations. This was illustrated by Paillard 
et al. (2000) who report that populations of winter wheat 
with the highest level of resistance to powdery mildew 
originated from sites where powdery mildew pressure was 
high, due to environmental factors, while the reverse was 
true of those populations where the pressure was low. On 
the other hand, the models reported here are less likely to 
describe the eco-climatic conditions favorable for the crop 
to develop traits that would protect it against the pathogen 
without the presence of the pathogen. The development 
of useful resistance in the landraces is an adaptive response 
to the biotic stress from the pathogen and not the envi-
ronment per se. However, to complicate the picture fur-
ther, Stukenbrock and McDonald (2008) pointed out that 
many crop pathogens have been domesticated together 
with their host crop and are thus linked back to the geo-
graphic distribution of the crop.

The most important aspect of FIGS is that it is pre-
dictive. Focused identifi cation of germplasm strategy does 
not aim to describe the mechanism behind the crop traits. 
If the models used to develop FIGS sets are predictive 
then they could be used to develop smaller subsets with a 
higher hit rate for a targeted crop trait.

Focused Identifi cation of Germplasm 
Strategy Models Provide a Complement 
to Expert Knowledge
The FIGS approach is not intended to replace the valuable 
expert knowledge held by crop breeders and genebank 
curators. When planning a new fi eld experiment, the pre-
dictions from FIGS will assist the crop expert to select the 
most appropriate genebank accessions to include. The size 
of the smaller subset could be limited by the capacity given 
by the size of the available fi eld area, the laboratory capac-
ity, or the project funding available for human resources.

Possible Causes of (Eventual) 
Prediction Problems
The predictive performance for the experiments in the 
stem rust and net blotch set from this current study was 
good. However, if the predictive performance is low when 
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the approach described here is followed, the list below 
provides some suggestions on how to improve the hit rate.

· The algorithm of the classifi er is not able to recog-
nize and discriminate all the samples. Further addi-
tional classifi cation methods and other preprocessing 
methods can be explored.

· The models explored and compared in this study used 
long-term monthly climatic data arranged from Janu-
ary to December. However, when refi ning these pro-
cesses it will be interesting to test if the predictive 
power of the techniques is improved when start of 
growing seasons are aligned so that only those months 
in which the crop would normally develop in situ are 
used in the models. In other words, sites are agro-
climatically compared for similarities based on con-
ditions prevailing during the actual growing seasons.

· The eco-geographic data from the source location of 
the landrace does not contain enough relevant infor-
mation that could be linked to the evolution of a 
given crop trait. Other eco-geographic datasets or 
other grid resolutions can be explored. For example, 
measures of long-term season-to-season variation 
for climatic parameters would be useful when con-
sidering crop adaptation strategies.

· Data quality, precision, or error issues of the germ-
plasm passport data. Data quality is of course para-
mount in any data analysis study. Written logbooks, 
collection mission reports, and similar sources can be 
revisited to complete missing data and improve on 
data accuracy, particularly the precision of collection 
site geo-coordinates.

· Lack of replicated measurements. Many datasets with 
evaluation of genebank material includes only one 
single observation for each genebank accession. With 
the lack of replication across multiple experiment 
years and experiment locations (agricultural research 
stations) it is very diffi  cult to assess the precision and 
to estimate the natural variance of the trait scores or 
observations. It is also diffi  cult to estimate any geno-
type × environment interaction eff ects in the trait 
dataset. Care should thus be made whenever pos-
sible to include replicated measurements across both 
experiment site and year for future trait evaluations. 
It is also important to apply an appropriate sampling 
design to avoid systematic bias in the recorded data.

· Assessment of trait variation could also be a problem 
as trait observations might include unexpected bias 
and mistakes. Some of the individual observations 
from the crop trait training set could be the result 
of an unusual experimental condition, for example, 
as locally higher pest stress pressure in smaller parts 
of the fi eld plot or unusual low or high pest activity 
during some of the trial seasons. With the absence of 
repetitions it is diffi  cult to evaluate this aspect. The 

initial data analysis can be made to explore outliers 
and to identify the most important problem sam-
ples. However, outliers can be valid data points and 
should not always be removed.

· When working with cultivated material (such as landra-
ces), the adaptive development of the crop trait might 
be more dominantly explained by the breeding deci-
sions made by the farmer. For more modern cultivated 
material there is no appropriate location of origin, as 
the breeding lines are often the complex result of cross-
ing between genetic resources from very many diff er-
ent source locations. For this problem FIGS strategy 
may not be the most appropriate approach.

Future Work
The predictive performance from other diff erent clas-
sifi cation methods should be explored. In this study we 
found signifi cant variation between the four diff erent 
classifi cation methods we used. The artifi cial neural net-
works (Bishop, 1996) is one particular interesting method 
to explore because the algorithm is so diff erent from the 
algorithms of the methods used here and also because the 
failure of the LDA (Fisher, 1936) classifi er indicates that the 
classifi cation problem here is not typical for a parametric 
solution. Another classifi er that could be explored is deci-
sion tree methods such as the random forest algorithm 
(Breiman, 2001; Stockwell, 2007). With multiple diff er-
ent classifi cation methods the so-called ensemble classifi er 
method (Kuncheva, 2004; Rokach, 2010) could be used 
to combine the predictive information from each classifi er. 
The classifi er ensemble will often provide a higher predic-
tive performance than even the best individual classifi er. 
The performance of the classifi er ensemble is based on the 
assumption that each classifi er describes the dataset inde-
pendently and in a diff erent way from the other classifi ers.

A signifi cant amount of work still needs to be done to 
identify or create environmental parameters that are more 
tightly linked to the evolution of traits so that the predic-
tive power of models can be improved.

Another obvious use case would be to apply the FIGS 
approach to analyzing gaps in genebank collections. The 
eco-geographic signature for a particular crop trait can be 
applied to identify likely locations with specifi c genetic 
diversity not yet represented in the collection. Focused 
identifi cation of germplasm strategy could thus guide new 
collecting expeditions to interesting new locations based on 
particular target crop traits. This can be compared to simi-
lar gap analysis studies with species distribution models in 
which the purpose is to complete the genebank collection 
with overall genetic diversity not yet represented in the col-
lection (Jarvis et al., 2003, 2005, Upadhyaya et al., 2009; 
Ramírez-Villegas et al., 2010). This use case for the FIGS 
strategy can be seen as a natural extension of the ecological 
niche modeling methods to estimate species’ distributions.
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CONCLUSIONS
This study contributes to the development of methods 
for identifying FIGS subsets of geo-referenced gene-
bank accessions more likely to contain sought-after novel 
genetic variation for adaptive traits. The objective of the 
FIGS strategy is to more effi  ciently identify and utilize 
plant genetic resources, particularly the landrace and wild 
relatives of crop plants. The results support the assertion 
that trait mining using the FIGS approach can signifi cantly 
improve the hit rate for identifi cation of landrace samples 
with resistance to target crop pests. Focused identifi cation 
of germplasm strategy subset selection is proposed as an 
alternative approach to the selection of a core collection 
to assess rare and useful traits such as resistance to diseases, 
pests, and abiotic constraints.
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