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RESEARCH

The focused identification of germplasm strategy (FIGS) 
provides a sampling strategy to identify accessions from gene-

bank collections for a target trait property (Mackay, 1986, 1990, 
1995; Mackay and Street, 2004). The FIGS approach assumes a 
predictive link between some eco-geographic parameters of the 
original collecting site of germplasm (with focus on landraces and 
crop wild relatives) and a target adaptive trait, such as disease resis-
tance. Recent studies have proposed the algorithms and methods 
for implementation of trait mining using FIGS (El Bouhssini et al., 
2009, 2011; Endresen, 2010; Endresen et al., 2011; Bari et al., 2011). 
Zeven (1998) presented a review of defi nitions and classifi cations 
for landraces and suggested the defi nition provided by Mansholt 
(1909), which reads, “an autochthonous landrace is a variety with a 
high capacity to tolerate biotic and abiotic stress, resulting in a high 
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ABSTRACT
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FIGS approach compared to a random selection 
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yield stability and an intermediate yield level under a low 
input agricultural system” (Zeven 1998, 137).

The experiment followed the same methodology as 
described with a recent FIGS trait-mining study for stem 
rust (Endresen et al., 2011) and was designed to validate 
this approach in a “blind” study. The approach of using 
a blind study is important because the previous studies 
using FIGS to calibrate predictive computer models have 
been simulation studies, with crop trait scores known a 
priori. Even if a subset of the accessions is hidden to the 
model-calibration procedure, the person conducting the 
data analysis knows the trait scores for these accessions. 
This knowledge could infl uence modeling decisions 
made during the data analysis. The FIGS approach could 
be useful to plant breeders and crop scientists when 
selecting accessions of landraces and crop wild relatives 
for experiments to identify new sources of target genetic 
diversity. It is therefore important to verify the predictive 
performance of the FIGS approach for a dataset with 
unknown trait scores. This study provided a more realistic 
test because the trait scores to be predicted were not 
disclosed to the person conducting the data analysis.

Stem rust on wheat (Triticum spp.) is caused by the fungus 
Puccinia graminis Pers. f. sp. tritici Eriks. & Henn. and has a long 
history as one of the most destructive diseases of cultivated 
wheat (McIntosh et al., 1995). A recent outbreak of stem 
rust was caused by a new and exceptionally virulent strain 
designated Ug99, and according to the North American 
race analysis system it was typifi ed to race TTKSK (Jin et al., 
2008). A report from CIMMYT (2005) estimated yield loss 
of up to 71% in experimental fi elds. Yield losses experienced 
in Kenya were reported to reach 80% (KARI, 2005; 
CIMMYT, 2005). Ug99 was discovered in Kalengyere, 
Uganda, in February 1999 (Pretorius et al., 2000) and it 
immediately raised concerns because of susceptibility of a 
large number of wheat germplasms from CIMMYT and 
the striking virulence toward the most important stem 
rust resistance genes including Sr31. This gene is one of 
the most widely used to provide protection against stem 
rust in modern cultivars (Wanyera et al., 2006). During the 
last decade, Ug99 caused an epidemic, spreading through 
Eastern Africa before turning northward to enter Yemen in 
2006 and more recently in Iran in 2007 (Nazari et al., 2009). 
Ug99 is likely to continue to spread and the identifi cation 
of new sources of resistance is important to sustain the use 
of wheat for food production (Njau et al., 2010). A global 
collaborative initiative to fi ght this new epidemic of stem 
rust, called the Borlaug Global Rust Initiative (2012), was 
established in 2008 (replacing the Global Rust Initiative 
launched in 2005). Recent work at CIMMYT reported the 
successful development of “new Ug99-resistant varieties 
of wheat that yield more than current popular varieties” 
(Singh et al., 2011). Several Ug99-resistant promising lines 
were also selected from ICARDA-supplied international 

nurseries. Of these, two bread wheat (Triticum aestivum L. 
subsp. aestivum) and three durum wheat [Triticum turgidum L. 
subsp. durum (Desf.) Husn.] lines have already been released 
in Ethiopia (ICARDA, 2010).

The rationale or fundamental theory for trait mining 
using FIGS is that crop traits are linked to the eco-
climatic environment associated with the collecting site 
of accessions and that this link can be exploited to build 
predictive models to identify a subset of accessions with 
a higher likelihood of holding a target trait property 
(Mackay and Street, 2004). The fi rst studies to validate the 
FIGS approach were conducted using a heuristic approach 
in which expert knowledge from the scientifi c literature 
was used to identify the boundaries for each of the eco-
climatic variables (Street et al., 2008; Bhullar et al., 2009; El 
Bouhssini et al., 2009, 2011). Other studies were designed 
to calibrate a predictive computer model to validate the 
FIGS approach (Endresen, 2010; Endresen et al., 2011). 
These FIGS studies were conducted as simulation studies 
to predict a priori known trait scores. The objective of this 
experiment was to validate the FIGS approach using a blind 
study in which the person calculating the computer model 
did not know the actual trait scores. This study design 
provides a more realistic test of the predictive capacity of 
the FIGS approach compared to previous studies.

MATERIALS AND METHODS
A set of 4563 genebank accessions with landraces of bread 

wheat (Triticum aestivum L. subsp. aestivum) and durum wheat 

[Triticum turgidum L. subsp. durum (Desf.) Husn.] were screened 

for resistance to the new isolate designated as Ug99 and typifi ed 

to race TTKSK of P. graminis Pers f. sp. tritici. The accessions 

were screened under natural infection at Tehama experimen-

tal station in Yemen during the 2008 cropping season. The 

fi eld responses of stem rust diff erentials for accessions planted 

as a trap nursery experiment and using inoculum designed to 

identify the most important stem rust genes (including Sr31) 

indicated a similar virulence pattern as is characteristic for 

Ug99. Confi rmation of existence of Ug99 (race TTKSK) was 

obtained from rust samples collected in experimental fi elds in 

Tehama and analyzed by Dr. Tom Fetch at Winnipeg, MB (A. 

Yahyaoui, personal communication, 2011). The results are not 

yet published in the scientifi c press but are already mentioned 

in the Genetic Resources Section database (ICARDA, 2011).

A recent study conducted by Endresen et al. (2011) explored 

prediction of stem rust resistance for landraces of bread wheat 

and durum wheat using trait mining with FIGS. The trait data-

set for stem rust resistance used in the study was obtained from 

the USDA-National Plant Germplasm System (NPGS) data-

base (USDA-ARS, 2011b). This study was conducted using the 

methodology that was developed by Endresen et al. (2011).

When developing a predictive classifi cation model, the fi t 

of the model to the calibration dataset (training set) does not 

provide a good indicator for how suitable the model is for pre-

dicting new samples not used for calibration (Hawkins, 2004). 

The trait dataset was therefore split into two parts. The fi rst part 
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(SINGER) (SGRP, 2011) and the USDA-NPGS (USDA-ARS, 

2011a) databases to fi nd more complete germplasm passport data. 

The dataset included a total of 4563 accessions from a total of 

1928 collecting sites. Most of the accessions (4438 samples) were 

of bread wheat, but the dataset also included 114 accessions of 

durum wheat and 11 wheat accessions of unidentifi ed species 

(genus Triticum). Figure 1 provides the location of the original 

collecting sites for all of the 4563 landraces included in the Ug99 

dataset. The trait observations for the training set with disclosed 

trait scores for 825 accessions were reclassifi ed to include three 

measurement levels. Trait scores reported as resistant (R) and 

moderately resistant (MR) were classifi ed as resistant samples 

(class 1). Trait scores reported as moderately susceptible (MS) 

were assigned to class 2, and those reported as susceptible (S) to 

class 3. For the spring type accessions, the Cobb’s scale for disease 

response and severity (Peterson et al., 1948) was used and for the 

winter type and the day-length-sensitive accessions, only disease 

response of R, MR, MS, and S was scored during the vegetative 

stage. The explorative principal component analysis (PCA) indi-

cated that factorial analysis with decomposition of the climate 

data into principal components (PCs) was a suitable approach for 

this dataset; the accessions were well separated in the score plots 

from this PCA. This initial analysis did not indicate any outliers.

ICARDA Eco-Climatic Database
The climate data for this study were extracted from the eco-

climatic information system maintained at the Geographic 

Information Systems Unit at ICARDA (De Pauw, 2008). The 

climate data were extracted using the latitude and longitude 

coordinates of the original landrace collection sites.

Prediction Based on a Model Calibrated 
from USDA Stem Rust Data
An initial prediction experiment was conducted using the 

same classifi cation models as developed for a previous study 

(Endresen et al., 2011). These models were calibrated with stem 

rust scores from fi eld trials in Minnesota during 1988 to 1994 

(training set) was used to calibrate the classifi cation model, and 

the second part (test set) was used to evaluate the performance 

of the model when predicting trait scores for samples not yet 

exposed to the model. The recommended size of the test set is 

normally given in the range of 25% of the samples (Myatt, 2007) 

to 33% (Brereton, 2006). Here we used a test set including 33% 

of the accessions randomly sampled from the full dataset. The 

accessions in the test set, however, were known to the modeler 

and could unintentionally have infl uenced choices made during 

the preparation of the adaptive trait-mining model.

A new experiment for blind predictions was designed to 

ensure that absolutely no test-set knowledge could infl uence the 

trait-mining model used for prediction of the trait scores. Dr. 

Kenneth Street representing ICARDA coordinated a follow-

up experiment using the dataset with measurements of Ug99 

resistance (K. Street, unpublished data, 2010). This experiment 

explored the performances of the trait-mining models in a sim-

ulation of a near real-life scenario in which the trait scores pre-

dicted by the model were not known to the modeler. A dataset 

including the accessions from the Ug99 trait dataset was pre-

pared. This Ug99 set was randomly divided into two subsets 

with approximately 20% of the samples being used as a training 

set with trait scores included and the remainder 80% as the test 

set without any of the trait scores included. The next step was 

to predict the trait scores for the accessions in the test set and 

report the predictions back to the project coordinator (Dr K. 

Street), who had access to the actual trait scores of the test set.

For real-life screening experiments to search for useful 

genetic diversity, such as resistance to fungal pathogens, the 

fi nal trait scores are not known when selecting accessions to 

include in the experiment. However, the passport data, includ-

ing the geographic coordinates where the original material was 

collected, is available. This study is therefore a more realistic 

simulation of the conditions and information available for the 

planning of germplasm-evaluation experiments.

The dataset with accessions screened for resistance to Ug99 

in Yemen in 2008 was matched with the accessions from the 

online System-wide Information Network for Genetic Resources 

Figure 1. Original collecting sites for the wheat landraces (4563 accessions from 1928 collecting sites). Latitudes span from 4°48′0″ N to 

62°43′12″ N and longitudes span from 10°4′12″ W to 134°4′12″ E.
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(Bonman et al., 2007; USDA-ARS, 2011b). However, using 

this model, prediction of the Ug99 scores recorded in Yemen 

was surprisingly low. Ranked by the predicted resistance, a sub-

set of 500 accessions was selected. From these accessions 9.55% 

were scored as resistant to Ug99 in the Yemen trials. The over-

all ratio of resistant accessions in the Ug99 set was reported to 

be 10.2% (K. Street, unpublished data, 2011). A second predic-

tion with accessions from the same collecting sites, grouped 

together using the mean trait score for accessions from the same 

site, resulted in an even lower hit rate.

Prestudy: Ug99 Set (550 and 275 Accessions)
The next experiment was conducted in which only the acces-

sions from the Ug99 set and only the 825 accessions with the 

trait scores reported were included. These accessions were split 

into a training set with 550 samples (67% of the accessions) 

and a test set with 275 samples (33%). For this experiment, the 

reported performance indicators were the averages from 15 

repeated prestudy experiments. Each of the replicated prestudy 

experiments was made from a new and diff erent allocation of 

accessions as training set and test set. The desktop study was 

conducted as described by Endresen et al. (2011), with the com-

parison of confi dence intervals for the performance indicators 

calculated, respectively, for the accessions sampled by soft inde-

pendent method of class analogy (SIMCA) (Wold, 1976; Wold 

and Sjöström, 1977) and k-nearest neighbor (kNN) (Cover and 

Hart, 1967). A “classifi er ensemble” (Kuncheva, 2004; Rokach, 

2010) was calculated as the mean of the predicted resistance 

class for each individual accession from the kNN and the 

SIMCA classifi ers. Predictive performance was measured using 

the positive predictive value (PPV) and positive diagnostic like-

lihood ratio (LR+) (Altman and Bland, 1994).

Blind Prediction of Ug99 Resistance 
(825 and 3738 Accessions)
The fi nal experiment was the predictive sampling of resistant 

accessions from the 3738 accessions of the Ug99 set with no trait 

scores disclosed to the modeler (test set). The classifi cation model 

was here calibrated using all of the 825 accessions from the Ug99 

set with trait scores disclosed (as the training set including 18% of 

the accessions in the full dataset). This trait-mining experiment 

was designed to simulate the sampling of accessions for a germ-

plasm evaluation project with the (imaginary) capacity to screen 

500 accessions. The task was therefore to select 500 accessions 

from the Ug99 test set predicted to have a higher likelihood to 

be resistant to the Ug99 stem rust pathogen.

The predictions from the SIMCA model and the kNN 

model were combined with equal weight to form a so-called 

classifi er ensemble (Kuncheva, 2004; Rokach, 2010) follow-

ing the same method as described for the prestudy. The top 

500 accessions ranked by the predicted resistance to Ug99 were 

selected as the sampled subset with resistant samples. These 500 

accessions corresponded to 13.4% of the samples in the test set 

with a total of 3738 accessions.

Classifi cation Methods (kNN and SIMCA)
The previous study by Endresen et al. (2011) indicated that the 

SIMCA (Wold, 1976; Wold and Sjöström, 1977) and the kNN 

(Cover and Hart, 1967) were well suited for the classifi cation of 

stem rust trait scores. The results reported here were calculated 

using these two classifi cation methods. Each of the predictions 

was also compared with a corresponding random sampling 

approach. The random sampling was conducted by permuta-

tion of the true trait scores across the accessions in the test set 

and simply observing the coincidental hit rate against the true 

trait scores for these accessions.

Software
The classifi cation models were calculated using the PLS Tool-

box (Eigenvector Research Inc., 2010) for MATLAB (Math-

Works Inc., 2009). The confi dence interval for the performance 

indicators was calculated using the online Statistics Calculator 

from the Centre for Evidence-Based Medicine (CEBM, 2011).

RESULTS

Prestudy: Ug99 Set (555 and 275 Accessions)
The plots in Fig. 2 provide the cross-validation results for 
the SIMCA model from the prestudy using a training set 
with 550 accessions. The predicted residual sum of squares 
(PRESS) decreases toward a minimum around seven PCs. 
The increase of PRESS after this level indicates that the 
SIMCA classifi er starts to overfi t the model to the data 
when more than seven PCs are included in the model. 
Cross-validation when using all of the 825 accessions with 
disclosed trait scores resulted in similar plots with the 
minimum PRESS around seven PCs. The optimal model 
complexity of seven PCs found here was chosen as the 
model complexity for the fi nal SIMCA model for predic-
tion of the 3738 blind samples.

Visual Inspection of the Characteristic Plots 
for the SIMCA Model
The score plots indicated that the fi rst PC focused on 
landrace accessions collected in Ethiopia. The second PC 
did not express focus on accessions from any individual 
country. The third PC focused on accessions collected in 
Greece. Ethiopia is the country of origin of most samples 
(1260 accessions) and Turkey the second ranked country 
(725 accessions) whereas Greece is ranked seventh (133 
accessions) using this approach. The infl uence plot for the 
SIMCA model of class 1 indicated that the samples from 
Ethiopia were split into one group well described by the 
model (low error indicated by small residuals [Q] and low 
leverage [T2]) and another group less well described by 
the model (with large residuals and high leverage). Most 
of the accessions from Greece have high values for both 
error and leverage. The accessions originating from Tur-
key have generally low infl uence and error and are there-
fore well described by the model.

The performance indicators for these classifi cation 
models are reported in Table 1. The hit rate for this trait-
mining experiment is notably higher than the predictive 
performance reported by Endresen et al. (2011) for a 
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similar study using a stem rust dataset from the USDA 
(USDA-ARS, 2011b). The predictive performance for 
the trait-mining models in this experiment is measured 
as four times higher than a random selection (Table 1) 
compared with an improved hit rate of two times reported 
by Endresen et al. (2011). The LR+ indicator should be 
used when comparing these results with the USDA stem 
rust results because of the diff erent ratios of resistant 
accessions (prevalence) between these two datasets.

The predictions from the classifi er ensemble suggest a gain 
in predictive performance of more than six times (Table 1). 
This is signifi cantly higher than for each the kNN and SIMCA 
classifi ers alone and suggests that the classifi er ensemble 
approach is suitable for this dataset. Notice, however, the 

overlapping 95% confi dence interval for the classifi er ensemble 
compared with the kNN and SIMCA classifi ers.

It is also important to note that the 95% confi dence 
interval for the SIMCA, kNN, and ensemble performance 
indicators overlaps with the confi dence interval for the 
randomly sampled accessions. Therefore, there is no 
statistically signifi cant support (at the 95% confi dence 
level) for a claim that these classifi cation models perform 
better than the random sampling method. It is possible 
that the relatively broad confi dence intervals are a result 
of too few samples in the test set. The correctly predicted 
resistant accessions (true positives) ranged from one to ten 
for the prediction models and from zero to three for the 
random sampling method.

Figure 2. Cross-validation results for the soft independent modeling of class analogy (SIMCA) model of the Yemen Ug99 set including 550 

training set accessions and 275 test accessions. The predicted residual sum of squares (PRESS) is plotted against the number of principal 

components (PCs) for each of the principal component analysis class models of the SIMCA model. (a) Principal component analysis model 

for class 1 with the resistant accessions, (b) class 2 with intermediate resistance, and (c) class 3 with the susceptible accessions.
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Blind Predictions for the Ug99 Set 
(825 and 3728 Accessions)

The classifi cation model for prediction of the 3728 unknown 
accessions from the Ug99 set was calibrated using all of 
the 825 accessions with revealed trait scores. The complete 
Ug99 set (4563 accessions) was reported to have 10.2% resis-
tant accessions. The subset with the 3738 blind accessions 
included 11.1% resistant samples. The 500 accessions selected 
by the kNN and SIMCA classifi er ensemble were reported 
to the project coordinator who found that 129 accessions 
(25.8%) were correctly predicted as resistant to Ug99. The 
proportion of resistant accessions in the set selected by the 
trait-mining models were therefore 2.3 times higher than 
the ratio of resistant samples in the Ug99 subset with hidden 
trait scores. The collection site locations of the 500 selected 

accessions predicted as resistant to Ug99 are indicated geo-
graphically in Fig. 3. The predictive performance is reported 
in Table 2. The predictive performance was at the same level 
as that reported by Endresen et al. (2011). Note that the 95% 
confi dence intervals for the performance indicators are well 
above the corresponding confi dence intervals for the random 
selection. There is therefore good statistically signifi cant sup-
port for a claim that these classifi cation models perform bet-
ter than the random sampling method.

DISCUSSION

From Minnesota to Yemen
The fi rst predictions using the USDA stem rust set to cali-
brate the model and the Ug99 set (tested in Yemen) as the test 
set did not provide any advantage over a randomly selected 
set. The USDA set and the Yemen set were both screened 
in open-fi eld experiments at the adult growth stage of the 
wheat plants. The Ug99 set included data from the screen-
ing of the Ug99 strain of stem rust. This is a diff erent (and 
much more virulent) type of stem rust than the type that 
was screened for the USDA set. The USDA set was screened 
in Minnesota (Rosemount and St. Paul) whereas the Ug99 
set was screened in Yemen. The environmental conditions 
are very diff erent in Tehama, Yemen, (dry and warm) com-
pared with Minnesota (wet and cold). These diff erences in 
trial site could perhaps cause a diff erence in the expression 
of stem rust resistance for these landrace genotypes. We 
also note that the environmental conditions in Tehama are 
more conductive to stem rust development and that the race 
composition of natural infection is more aggressive than in 
Minnesota in particular with the presence of Ug99.

This result indicates that the calibration could be 
specifi c to the P. graminis population and could not fi nd a 
general model to explain the resistance to other populations 

Table 1. Results from the evaluation of predictive performance 

in the 825 accessions with trait score included (training set 

550 accessions and test set 275 accessions).

Model† PPV‡ LR+§ Estimated gain¶

kNN 0.29 (0.13–0.53)# 5.61 (2.21–14.28) 4.14 (1.86–7.57)

SIMCA 0.28 (0.14–0.48) 5.26 (2.51–11.01) 4.00 (2.00–6.86)

Ensemble 

classifi er††

0.33 (0.12–0.65) 8.09 (2.23–29.42) 6.47 (2.05–11.06)

Random 

selection

0.06 (0.01–0.27) 0.95 (0.13–6.73) 0.97 (0.16–4.35)

†kNN, k-nearest neighbor (Cover and Hart, 1967); SIMCA, soft independent 

modeling of class analogy (Wold, 1976; Wold and Sjöström, 1977).
‡The positive predictive value (PPV) provides an indicator for classifi cation 

performance of resistant accessions (positives) (Altman and Bland, 1994).
§The positive diagnostic likelihood ratio (LR+) provides a similar indicator that is less 

sensitive to the prevalence or proportion of resistant accessions (positives) in the 

dataset (Altman and Bland, 1994).
¶The estimated gain was calculated as the PPV divided by the proportion resistant 

samples (prevalence) for each subset.
#The 95% confi dence interval for each of the performance indicators is included 

inside the parentheses.
††The mean of the predicted class for each record (accession) from the kNN 

and the SIMCA classifi er was calculated to form the predicted class for the 

ensemble classifi er.

Figure 3. Map with the 500 accessions predicted to be resistant to stem rust. Gray stars indicate accessions predicted as resistant by 

all of the trait mining models (soft independent modeling of class analogy [SIMCA] and k-nearest neighbor [kNN]). White stars indicate 

accessions predicted to be resistant only by one of these trait mining models (SIMCA or kNN).
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(races). It is also possible that the virulence of the race is 
specifi c to the environment or that the functional response 
of the crop to the disease is specifi c to the environment 
(Bolnick et al., 2011; Fynn et al., 2011). This problem can 
perhaps be compared with the problem of overfi tting of 
the model to the training set (Hawkins, 2004). It is possible 
that a reduction of the model complexity resulting in lower 
precision would improve the generality of the model.

The prestudy tests including the 825 accessions with 
known trait scores indicated four to six times improved hit rate 
compared with random sampling (Table 1). This is higher than 
the improved hit rate of 2.5 times reported by Endresen et al. 
(2011) for a similar study. The Ug99 set includes trait scores 
from one single trial season and at only one site whereas the 
USDA set explored by Endresen et al. (2011) is a compilation 
of trait scores from six diff erent seasons and two diff erent 
experiment stations. The diff erent screening conditions for 
the USDA set could therefore introduce variation (genotype 
× environment interaction) in the trait scores that would be 
interpreted as noise by the classifi cation algorithm. These 
observations suggest a best practice of choosing the training 
set for future FIGS studies should include trait scores with the 
same or at least similar fi eld trial conditions.

Model Structure
It is possible that a predictive signal exists between the USDA 
stem rust set and the Ug99 set that the classifi cation mod-
els used in this study were unable to fi nd. The classifi cation 
model might be “overfi tted” with respect to the training data 
(USDA stem rust set). It is relatively easy to make the model 
fi t the training set but much more challenging to make the 
model describe the test set (samples not “seen” by the model 
calibration algorithm). The classifi er could also be too simple 
or have an inappropriate structure. Fuzzy samples are known 
to disturb the central covariance matrix of discriminant anal-
ysis models (Fielding, 2007). There might be a similar eff ect 
disturbing the SIMCA and kNN models used here. Other 
methods such as artifi cial neural networks (ANN) (Bishop, 
1996) and random forest (Breiman, 2001) are less sensitive 
to such problems and might give a stronger predictive signal 
where other methods fail.

These stem rust datasets hold unequal proportions of 
resistant accessions compared to the much larger number of 
susceptible accessions. The stem rust datasets have an asymmetric 
internal class data structure, also called “unbalanced class.” 
Diff erent classifi ers will be aff ected diff erently by the challenge 
of modeling very diff erent class sizes. Artifi cial neural network 
has been reported to make better provision for asymmetrical 
internal class structures (Davies and Silverstein, 1995).

Predictive Performance and the Size 
of the Training Set
The predictive performance for the prestudy experi-
ment was high, but the 95% confi dence interval, when 

compared with the random sampling approach, over-
lapped. The reason for the wide confi dence interval in the 
prestudy was the low number of samples (275 accessions) 
in the test set. Allocating fewer accessions to the training 
set and more accessions to the test set is likely to give lower 
actual predictive performance (fewer training samples for 
the model to learn from). More accessions in the test set 
are also likely to give narrower confi dence intervals. This 
suggests that a training set of 550 accessions is suffi  cient 
to calibrate the trait-mining model, but a test set of 275 
accessions is too small to validate the model.

In the case of the blind study to predict resistant accessions 
within the test set, a training set size of 825 accessions proved 
to be suffi  cient to calibrate the trait-mining models with 
good predictive performance. Further work is recommended 
to investigate the number of accessions required for training 
sets for a range of adaptive traits. In the practical application of 
FIGS, information about the minimum number of positives 
and negatives would be helpful in reducing the cost of the 
initial fi eld experiment while avoiding the risk of generating 
too small a training set. Notice that the model calibration 
procedure requires inclusion of a minimum number of both 
resistant and susceptible accessions in the training set. In this 
study, the results indicated that it was the number of resistant 
samples in the dataset that provided a limitation and not the 
number of susceptible samples.

The prestudy indicated a gain in predictive 
performance of four to six times when compared with 
a random selection (Table 1). The blind study provided 
a gain in prediction quality of 2.3 times (Table 2). The 
relative size of the training set was diff erent for these 
experiments. For the prestudy, the training set included 
67% of the total number of accessions whereas the training 
set for the blind study included only 18% of the accessions. 
The substantially lower predictive performance for the 
blind study compared with the prestudy experiments 
could be an eff ect of the lower ratio accessions allocated 

Table 2: Predictive performance in the 3738 “blind” samples 

with trait score hidden from the modeler (training set 825 

accessions and test set 3738 accessions).

Model PPV† LR+‡ Estimated gain§

Ensemble 

classifi er¶

0.26 (0.22–0.30)# 2.78 (2.34–3.31) 2.32 (2.00–2.68)

Random 

selection

0.11 (0.09–0.15) 1.02 (0.77–1.36) 1.02 (0.77–1.32)

†The positive predictive value (PPV) provides an indicator for classifi cation 

performance of resistant accessions (positives) (Altman and Bland, 1994).
‡The positive diagnostic likelihood ratio (LR+) provides a similar indicator that is less 

sensitive to the prevalence or proportion of resistant accessions (positives) in the 

dataset (Altman and Bland, 1994).
§The estimated gain was calculated as the PPV divided by the proportion resistant 

samples (prevalence) for each subset.
¶The mean of the predicted class for each record (accession) from the k-nearest 

neighbor (kNN; Cover and Hart, 1967) and the soft independent modeling of class 

analogy (SIMCA; Wold, 1976; Wold and Sjöström, 1977) classifi er was calculated 

to form the predicted class for the ensemble classifi er.
#The 95% confi dence interval for each of the performance indicators is included 

inside the parentheses.
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to the training set. Roy et al. (2008) explored the impact 
of the size of the training set relative to the test set on 
the predictive performance for classifi cation studies. 
Their study included three diff erent datasets and found a 
reduction of predictive performance with fewer samples 
allocated to the training set for two of the datasets. They 
concluded that the optimum size of the training set varied 
with diff erent datasets. If the pattern the classifi cation 
model should fi nd is complex and involves a large number 
of interactions between many diff erent features of the eco-
climatic data, then the training set needs to be larger to 
provide enough examples for the classifi er to learn from. 
This eff ect has important implications for trait mining 
using FIGS. For complex trait–environment relations, 
the quality of the predictions is dependent on a relatively 
larger training set. Using diff erent sizes of the training set 
for the prestudy experiments could give a useful indication 
of this eff ect and is recommended for future FIGS studies.

Limitations of the Focused Identifi cation 
of Germplasm Strategy Approach
The methodology followed here requires an initial train-
ing set to calibrate the prediction model. This requirement 
would often demand a smaller set to be screened in a fi eld 
experiment a priori to data analysis. We also observed that 
trait data for stem rust from previous screening experiments 
failed to produce good models for this Ug99 set. It is there-
fore suggested that the initial training set be sensitive to the 
experimental conditions. Additionally, the FIGS approach 
requires accessions to be geo-referenced with reasonably 
accurate spatial coordinates to enable the extraction of eco-
climatic data for the source environments.

The FIGS approach will identify a subset of accessions 
predicted to hold a desired trait property by searching for 
accessions from similar eco-geographic environments as 
accessions already identifi ed to hold the trait property of 
interest. It is therefore possible that the FIGS approach will 
show less merit to identify new sources of genetic diversity 
but rather identify more accessions with the same genetic 
diversity as is already known. Bhullar et al. (2009) reported 
use of the FIGS approach together with allele mining to 
identify new sources of resistance to powdery mildew 
[Blumeria graminis (DC.) Spear f. sp. tritici] at a known locus in 
wheat (Triticum spp.). A subset of 1320 accessions was derived 
using FIGS. Field trials including these 1320 accessions 
resulted in the identifi cation of 211 resistant accessions 
(16% hit rate). Molecular analysis of these 211 accessions 
identifi ed seven new alleles for powdery mildew resistance 
compared with the previously known seven functionally 
distinct alleles (Pm3a to Pm3g). This result clearly indicates 
the suitability of the FIGS approach to identify new sources 
of disease resistance for wheat. The hypothesis is that 
functionally distinct resistant alleles are more likely to be 
found at similar eco-geographic environments.

Further studies are recommended to explore the 
suitability of the FIGS approach to identify new sources of 
useful genetic diversity. This study indicates that the FIGS 
approach is effi  cient in the identifi cation of accessions with 
a target trait property. If further studies confi rm that this 
approach is also effi  cient in the identifi cation of new sources 
of target genetic diversity, then FIGS could provide an 
important tool for improving future plant breeding eff orts.

CONCLUSION
This study highlights a number of issues regarding how 
the selection of germplasm for evaluation to discover new 
genetic variation for specifi c adaptive traits might become 
more eff ective. Two sets of a priori data were used to train 
models to predict which accessions might possess resis-
tance to stem rust based on the classifi cation of the envi-
ronment from which they were collected.

The location and year of the experiment in which the a 
priori evaluation data were obtained were seen to infl uence 
the predictive power of the models. Another factor requiring 
consideration was the size and perhaps the ratio of resistant to 
susceptible expression of the training set. This factor might also 
be infl uenced by the specifi c adaptive trait under consideration. 
It was also noted that the FIGS approach requires the accessions 
to be geo-referenced before an association between the 
germplasm and the environment (in which it evolved and was 
subject to selection) can be established.

The blind prediction example, however, suggests that 
trait mining using the FIGS approach to select accessions 
for a resistance to Ug99 can be as much as 2.3 times more 
eff ective than a random sample if the training set is of 
suffi  cient size and scope. This diff erence indicates that the 
FIGS approach can contribute signifi cant effi  ciency to the 
selection of germplasm for evaluation and suggests that 
further research into refi nement is justifi ed.
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